
Implementation and Benchmarking of
Round 2 Candidates

in the NIST Post-Quantum Cryptography
Standardization Process

Using FPGAs

Kris Gaj

George Mason
University

Thank You!

Dr. David Hu
Prof. Ray Cheung

2

Great thanks to

for the kind invitation
to give this talk!

Where is George Mason University?

www.intostudy.com/mason | 7

#2
Happiest Place in America
(SmartAsset 2016)

#7
Fastest growing US metro
area, with one of the lowest
unemployment rates
(Bloomberg 2013)

Portland

Seattle

San Francisco

Los Angeles

Denver

Dallas

Atlanta

New York

Miami

DetroitChicago

Washington, DC

Fairfax

San Diego

• East Coast of the U.S.A.
• Near Washington D.C.
• 4 hour drive from New York
• 30 min drive to the Washington Monument,

White House, and the U.S. Capitol
3

Advantages of the Location

National Science Foundation

National Institute of Standards
and Technology

Defense Advanced Research
Projects Agency

Amazon Headquarters 2

4

CERG: Cryptographic Engineering Research Group

5

3 faculty members, 8 Ph.D. students,
5 MS students, 7 affiliated scholars

CERG Group Members supporting PQC

Farnoud Viet Duc

PhD Students

SW/HW Codesign
RTL Accelerators

Experimental Setup for
Timing Measurements

CAD Tools

RTL Design of
HW Accelerators
for Lattice-based

& Code-based PQC

HLS Design of
HW Accelerators
for Lattice-based

PQC
NEON-based SW
implementations

6

Recent
Graduate

Kamyar
RTL Design of

HW Accelerators
for Lattice-based

PQC
Side-Channel

Analysis
RISC-V Accelerators

CERG Group Members supporting PQC

Bakry

PhD Students

Experimental Setup
for Side-Channel

Analysis
Lightweight

Architectures

7

Javad

RTL Design of
HW Accelerators

for Symmetric-based
PQC

Michał Mike

Affiliated
Scholar

Faculty

Sampling
in Hardware

RTL Design of
HW Accelerators

for Lattice-based PQC
& Lattice Sieving

Military University
of Technology in
Warsaw, Poland

Implementation and Benchmarking of
Round 2 Candidates

in the NIST Post-Quantum Cryptography
Standardization Process

Using FPGAs

Cryptographic Contests 2007-Present

Year07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

SHA-3

51 hash functions ® 1 winner
X.2007 X.2012

CAESAR
I.2013

57 authenticated ciphers
® multiple winners

II.2019

Post-Quantum

56 Lightweight authenticated ciphers
& hash functions

VIII.2018
Lightweight

69 Public-Key Post-Quantum
Cryptography Schemes

XII.2016

TBD

TBD

Completed

In progressX.2012X.2012

Evaluation Criteria

10

Security

Software Efficiency Hardware Efficiency

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers

U.S. Open of Ciphers

11Source: https://www.bicsport.com/

NIST PQC Standardization Process
Feb. 2016: NIST announcement of standardization plans at
PQCrypto 2016, Fukuoka, Japan

Dec. 2016: NIST Call for Proposals and Request for
Nominations for Public-Key Post-Quantum Cryptographic
Algorithms

Nov. 30, 2017: Deadline for submitting candidates

Dec. 2017: Announcement of the First Round Candidates

Apr. 2018: The First NIST PQC Standardization Conference

Nov. 30, 2018: Deadline for mergers of similar submissions

Jan. 30, 2019: Announcement of candidates qualified to
Round 2

12

NIST PQC Standardization Process

Mar. 15, 2019: Deadline to submit tweaks for Round 2
candidates
April 10, 2019: Publication of Round 2 submission packages
Aug. 22-24, 2019: Second NIST PQC Conference

April 15, 2020: Deadline to submit comments

July 22, 2020: Announcement of Round 3 7 finalists and
8 alternate candidates

July 29, 2020: NSA’s Cybersecurity Perspective

Spring 2021: Third NIST PQC Conference

2022-2023: Draft standard(s) released for public
comments

2024: First PQC standard(s) published
13

Focus of
this talk

Gazing
the PQC
Crystal
Ball

Reality
Check

Three Types of PQC Schemes

1. Public Key Encryption
(PKE)

2. Digital Signature
(DS)

3. Key Encapsulation
Mechanism
(KEM)

14

Key Establishment Using Long-Term Keys

15

Client Server

Request

Certificate={Public_KeyServer, SignatureCA}

Signature Verification
Encapsulation

Decapsulation

Ciphertext

Shared Secret Shared Secret

Private_KeyServer

Five Security Levels

Level Security Description
1 At least as hard to break as AES-128 using exhaustive

key search
2 At least as hard to break as SHA-256 using collision

search
3 At least as hard to break as AES-192 using exhaustive

key search
4 At least as hard to break as SHA-384 using collision

search
5 At least as hard to break as AES-256 using exhaustive

key search

16

Leading PQC Families

17

Family Encryption/
KEM

Signature

Symmetric-based XX

Code-based XX X

Lattice-based XX X

Multivariate X XX

Isogeny-based X

XX – high-confidence candidates
X – medium-confidence candidates

Round 1 Candidates

Family Signature Encryption/KEM Overall

Lattice-based 5 21 26

Code-based 2 17 19

Multivariate 7 2 9

Symmetric-
based

3 3

Isogeny-based 1 1

Other 2 4 6

Total 19 45 64

82 submissions, 69 accepted as complete, 5 officially withdrawn
25 Countries, 6 continents, 256 co-authors

18

Round 1 Submissions
12 considered broken, 8 in need of serious tweaks

DAGS.

Sources: Lange, ICMC May 2018 & pqc-comments@nist.gov

Round 2 Candidates

Family Signature Encryption/KEM Overall

Lattice-based 3 9 12

Code-based 7 7

Multivariate 4 4

Symmetric-
based

2 2

Isogeny-based 1 1

Total 9 17 26

26 Candidates announced on January 30, 2019

20

Round 2 Submissions (announced Jan. 30, 2019)

Sources: Moody, PQCrypto May 2019

The 2nd Round Candidates
• Encryption/KEMs (17)

▪ Digital Signatures (9)

• CRYSTALS-KYBER
• FrodoKEM
• LAC
• NewHope
• NTRU (merger of NTRUEncrypt/NTRU-HRSS-KEM)
• NTRU Prime
• Round5 (merger of Hila5/Round2)
• SABER
• Three Bears

• BIKE
• Classic McEliece
• HQC
• LEDAcrypt (merger of LEDAkem/pkc)
• NTS-KEM
• ROLLO (merger of LAKE/LOCKER/Ouroboros-R)
• RQC

• SIKE

• CRYSTALS-DILITHIUM
• FALCON
• qTESLA

• Picnic
• SPHINCS+

• GeMSS
• LUOV
• MQDSS
• Rainbow

NIST Report on the 1st Round: https://doi.org/10.6028/NIST.IR.8240

• Lattice-based
• Code-based
• Isogenies

• Lattice-based
• Symmetric-based
• Multivariate

9
7

1

3

2

4

Hardware
Benchmarking

Round 2 Candidates in Hardware
#Round 2
candidates

5

14

29

26

AES

SHA-3

CAESAR

PQC

Implemented
in hardware

5

14

28

17

Percentage

100%

100%

97%

65%

23

Challenges of Post-Quantum Cryptography

Mathematical complexity

Large amount of man-power

New types of basic operations

Need for random sampling not
only from uniform but also from
discrete Gaussian and/or other distributions
Constant-time implementations
Hardware resources required
Need for new SCA (Side-Channel Attack) countermeasures against
power and electromagnetic analysis
Plug-and-play replacement for current public-key cryptography units
Intermediate use of hybrid systems

24

Major Optimization Targets

High-Speed
Lightweight

• Parallel processing
• Constant-time
• Parametric code

• Small area, power,
energy per operation

• Resistance to power
& electromagnetic
analysis

25

Lattice-Based KEMs in Pure Hardware

26

High-Speed Lightweight

KYBER H: GMU, USA

FrodoKEM H: PQShield/Bristol, UK + ALaRI, Switzerland

LAC H: GMU, USA

NewHope H: Tsinghua, China
H: IIIT Delhi & IIT Ropar, India + NTU, Singapore &
Fraunhofer, Singapore
H: GMU, USA

NTRU

NTRUPrime

Round5 H: MUT, Warsaw, Poland & GMU, USA H: MUT, Warsaw, Poland

SABER H: U. Birmingham, UK

Three Bears

Lattice-Based KEMs: HW & SW/HW
High-Speed Lightweight

KYBER H: GMU, USA
SH: Fudan U., China; (VPQC)

SH: Fraunhofer SIT, Darmstadt,
Germany
SH: TUM/Airbus, Germany (RISQ-V)

FrodoKEM H: PQShield/Bristol, UK + ALaRI, Switzerland
SH: GMU, USA

SH: MIT, USA (Sapphire)

LAC H: GMU, USA
SH: Fudan U., China (VPQC)

NewHope H: Tsinghua, China
H: IIIT Delhi/IIT Ropar, India + NTU/Fraunhofer
Singapore
H: GMU, USA
SH: TUM, Germany + Delft, the Netherlands
SH: Fudan U., China (VPQC)

SH: MIT, USA (Sapphire)
SH: Fraunhofer SIT, Darmstadt,
Germany
SH: TUM/Airbus, Germany (RISQ-V)

NTRU SH: GMU, USA

NTRUPrime SH: GMU, USA

Round5 H: MUT, Warsaw, Poland + GMU, USA H: MUT, Warsaw, Poland

SABER HW: U. Birmingham, UK
SH: KU Leuven, Belgium + U. Birmingham, UK
SH: GMU, USA

SH: TUM/Airbus, Germany (RISQ-V)

Three Bears 27

Isogeny-Based and Code-Based KEMs

28

High-Speed Lightweight

Isogeny-Based
SIKE H: FAU & USF, USA

SH: Radboud U., the Netherlands + Microsoft
Research, USA
H: FAU & USF, USA

SH: Radboud U., the
Netherlands + Microsoft
Research, USA

Code-Based
BIKE H: NTU, Singapore + Yale U., USA + CUHK, Hong

Kong (key generation)
H: Intel, USA (decoder)
H: R-U Bochum, Germany

Classic
McEliece/
NTS KEM

H: Yale U., USA + Fraunhofer SIT, Darmstadt,
Germany

LEDACrypt H: NTU, Singapore + Marche
Polytechnic U., Italy

ROLLO

RQC

Digital Signatures

29

High-Speed Lightweight

Lattice-Based
DILITHIUM SH: MIT, USA

FALCON

qTESLA SH: MIT, USA
SH: Yale U., USA + MAN T&B SE,
Germany + U. Waterloo, Canada +
Microsoft Research, USA

Symmetric-Based
Picnic H: Graz U.T., Austria + AIT, Vienna, Austria

SPHINCS+

Multivariate
GeMSS

LUOV

MQDSS

Rainbow H: GMU, USA

NewHope and CRYSTALS-KYBER

30

Feature NewHope CRYSTALS-KYBER

Underlying Problem Ring-LWE Module-LWE

Security Levels lattice dimension = n
L1: n=512, L5: n=1024

n=256,
lattice dimension = k*n

L1: k=2, L3: k=3,
L5: k=4

Modulus q Prime 12,289 Prime 3,329

Required Hash-based
Functions SHAKE128, SHAKE256 SHAKE128, SHAKE256

SHA3-256, SHA3-512

Sampling CBD* CBD*

Poly-Mult in Encaps 2 k2 + k

Poly-Mult in Decaps 3 k2 + 2k

* Centered Binomial Distribution (CBD)

Feature LAC (v3a/v3b) Round5 (0d/5d)

Underlying Problem Ring-LWE Ring-LWR

Error Correcting Code BCH None / XEf

Security Levels
lattice dimension = n

L1: n=512, L3: n=1024,
L5: n=1024

lattice dimension = n
L1: n=586/508
L3: n=852/756

L5: n=1170/946
Modulus q Prime 251 / 256 L1: 213/210, L3: 212/212

L5: 213/211

Required Hash-based
Functions Left up to implementers L1: SHAKE128,

L3, L5: SHAKE256

Sampling n-ary CBD with fixed
Hamming weight

uniform

Poly-Mult in Encaps 2 2

Poly-Mult in Decaps 3 3

LAC and Round5

31

Common Optimization Method

32

Efficient hardware scheduling to perform operations
without data dependency in parallel

NewHope Encryption

Common Optimization Method

33

Efficient hardware scheduling to perform operations
without data dependency in parallel

CRYSTALS-KYBER Encryption (Security Level 1)

6HULDOL]H�	
2XWSXW

177�0$&¬>�@

&RPSUHVV

,QSXW�	
'HVHULDOL]H

177�0$&�>�@

'HFRPSUHVV

6+$.(

0HPRU\

6DPSOHUV

����F\FOHV ����F\FOHV����F\FOHV ����F\FOHV ����F\FOHV ����F\FOHV���F\FOHV ����F\FOHV���F\FOHV ���
F\FOHV

���
F\FOHV

a����F\FOHV

Common Optimization Method

34

Efficient hardware scheduling to perform operations
without data dependency in parallel

LAC Encryption

 Cycles (× 1000)
1 2 3 4 5

Rejection
Sampling

 Permutation

 Permutation

 Permutation

a × r +e1

b × r

0

Keccak Poly Gen Poly Mult Poly Add

D2.Enc(BCH.Enc(m))

+ m + e2

Generate r

Generate e1

Generate e2

Encode

Generate a

LAC Decryption

 Cycles (× 1000)
1 2 3 4 50

Poly Mult BCH Decode

c1 × s

D2 Decode

D2.Dec(m’’)

BCH.Dec(m’)

Decompress(c2)-u

Poly Sub

Algorithm-Specific Optimization Methods

35

Number Theoretic Transform (NTT)
Processing FOUR coefficients at a
time
Resource sharing
e.g., use a single module to
perform NTT, NTT-1, & pointwise
multiplication
Efficient modular reduction

NewHope & CRYSTALS-KYBER

RAM
N/4x56

dibdia

doadob

DD CC BB AA

X X

RAM1
2.5Nx14

diadib

doadob

RAM2
2Nx14

diadib

dobdob

Mod Mod

Butterfly Butterfly

A’A’D’D’ C’C’ B’B’

X

0s

Mod

Butterfly

X

0s

Mod

Butterfly

A’

B’

C’

D’

SIPO SIPO SIPO SIPO

..
..

..
..

..
..

..
..

..
..

..
..

RA
M

1
do

b

RA
M

1
do

a

RAM2
doa

0s ||
div_in1

0s ||
div_in2

0s ||
div_in4

0s ||
div_in3

RAM2
dob

di
v_

do
2

di
v_

do
1

di
v_

do
4

di
v_

do
3

NTT_do

NTT_do

56

56

28 28

28 28

15 15

1515

56

RAM1
dob

RAM1
doa

RAM2
dob

RAM2
doa

NTT/invNTT

56

N
TT

_d
i

64

63
..5

6

55
..4

8

Sample

8 8

Ham.
ROM

Ham.
ROM

4 4

5

Add
Const
ROM

14

47
..4

0

39
..3

2

8 8

Ham.
ROM

Ham.
ROM

4 4

5

Add
Const
ROM

14

31
..2

4

23
..1

6

8 8

Ham.
ROM

Ham.
ROM

4 4

5

Add
Const
ROM

14

15
..8 7.
.0

8 8

Ham.
ROM

Ham.
ROM

4 4

5

Add
Const
ROM

14

||

56

1414

15

Add

64

4

||

0

Q/2

56

14

14
14

14

Encode

14

14

17

17
17

17
17

17 17 13...0

15

m
sb

15

14
13...0

- Q

||
14 3

“ϬϬϬ”

17
Q/2

13

17

- 4Q - 2Q - Q

msb
14

||
16

Div
3

||
14 3

“ϬϬϬ”

17
Q/2

13

17

Div
3

||
14 3

“ϬϬϬ”

17
Q/2

13

17

Div
3

||
14 3

“ϬϬϬ”

17
Q/2

13

17

Div
3

||

55
..4

2

41
..2

8

27
..1

4

13
..0

12

Compress

12

64

14

11
..9

8.
.6

5.
.3

2.
.0

3 3 3 3

Deco.
ROM

Deco.
ROM

Deco.
ROM

Deco.
ROM

141414

||

56

De
co

m
pr

es
s

1515

||||

14 14
0 0

+Q

15

m
sb

15

14
13...0

Sub

14

- Q/2

+

15 msb

16 REP

16
16

Fl
ip

ab
s

14 14

+
Q or
 Q/2

msb
16

16

16

16

16

16

Flip
abs

Flip
abs

16

+

14 14

+
Q or
 Q/2

msb
16

16

16

16

16

16

Flip
abs

Flip
abs

16

+

14 14

+
Q or
 Q/2

msb
16

16

16

16

16

16

Flip
abs

Flip
abs

16

+

14 14

+
Q or
 Q/2

msb
16

16

16

16

16

16

Flip
abs

Flip
abs

16

+

||
4

64

56 56

Decode

16

56

Reduction (Red)

0

q_hatq_hat
14+ȕ

>> (α-ȕ)

X
2^(14+α)/

Q

q_hatxQq_hatxQ

ulul

14-ȕ 14+ȕ

ulululul

X Q
28-α-ȕ

15

14

msb

15

- Q+1

q r

28u

Ba
rr

et
t (

M
od

 ,
Di

v)

64GenA

16
<5*Q

to
_c

tr
l

14

Asym FIFOAsym FIFO

Red

Asym FIFOAsym FIFO
56

Asym FIFOAsym FIFO

Asym FIFOAsym FIFO

Asym FIFOAsym FIFO
192

64

Asym FIFOAsym FIFO

Asym FIFOAsym FIFO
192

Asym FIFOAsym FIFO

64

448

56De
co

de
Pk

/E
nc

od
eC

sout1

Asym FIFOAsym FIFO
sin1

Asym FIFOAsym FIFO

56

448

64sout1

Asym FIFOAsym FIFO
sin2

Asym FIFOAsym FIFO

36

Encapsulation Time on Artix-7 [µs]
11

.8

20
.9 26

.6

14
.3 19

.2

27
.4

14
.3 20

.3

27
.0

15
.5

24
.7

15
.7

29
.3

17
.4

28
.1 32

.8

1 3 5 1 3 5 1 3 5 1 3 1 5 1 3 5

R5ND_CCA
_KEM_5d

Kyber LAC-v3b R5ND_CCA
_KEM_0d

New
Hope

LAC-v3a

1
2 3

4 5
6

1 23

4

5
1 23

4

5

37

15
.9

27
.7 35

.4
18

.4
27

.8
36

.8
20

.1
32

.4

20
.9 26

.5
35

.2
21

.5
40

.5
21

.7
36

.4 42
.7

1 3 5 1 3 5 1 3 1 3 5 1 5 1 3 5

R5ND_CCA
_KEM_5d

LAC-v3b R5ND_CCA
_KEM_0d

Kyber NewHope LAC-v3a

Decapsulation Time on Artix-7 [µs]

1
2

3 4 5 6

1
2 3

4

512 3

4
5

38

Rankings & Ratios on Artix-7

Level 1
Exe[us] Ratio

Level 3
Exe[us] Ratio

Level 5
Exe[us] Ratio

Round5_5d 12.2 1.00 Kyber 19.9 1.00 Round5_5d 27.6 1.00
Kyber 14.8 1.21 LAC-v3b 21.2 1.07 LAC-v3b 28.1 1.02
LAC-v3b 14.8 1.21 Round5_5d 21.6 1.09 Kyber 28.4 1.03
Round5_0d 16.0 1.31 Round5_0d 25.6 1.29 NewHope 30.3 1.10
NewHope 16.3 1.34 LAC-v3a 29.1 1.46 LAC-v3a 33.9 1.23
LAC-v3a 17.9 1.47

Level 1
Exe[us] Ratios

Level 3
Exe[us] Ratio

Level 5
Exe[us] Ratio

Round5_5d 16.3 1 Kyber 27.2 1.00 Kyber 36.2 1.00
LAC-v3b 18.9 1.16 Round5_5d 28.4 1.04 Round5_5d 36.4 1.01
Round5_0d 20.6 1.26 LAC-v3b 28.7 1.06 LAC-v3b 37.9 1.05
Kyber 21.4 1.31 Round5_0d 33.2 1.22 NewHope 41.5 1.15
NewHope 22.0 1.35 LAC-v3a 37.4 1.38 LAC-v3a 43.8 1.21
LAC-v3a 22.2 1.36

Encapsulation

Decapsulation

39

Resource Utilization on Artix-7
9,
00

0

9,
00

0

11
,8
64

11
,8
84

12
,1
83 18
,9
55 28

,3
62

32
,1
84

36
,5
78

59
,8
52

69
,5
48

1 3 5 1 3 5 1 3 5 1 3 5

NewHope CRYSTALS
-KYBER

LAC Round5

LUT

12
.0

12
.0

15
.0

15
.0

15
.0

8.
5

11
.5

11
.5

3.
0

3.
0

3.
0

1 3 5 1 3 5 1 3 5 1 3 5

NewHope CRYSTALS
-KYBER

LAC Round5

BRAM

8,
73

2

8,
73

2

10
,3
48

10
,3
80

12
,4
41

15
,9
58 26
,1
82

26
,8
82

56
,3
55

95
,1
70

11
3,
91

3

1 3 5 1 3 5 1 3 5 1 3 5

NewHope CRYSTALS
-KYBER

LAC Round5

FF

4 4

8 8 8

0 0 0 0 0 0

1 3 5 1 3 5 1 3 5 1 3 5

NewHope CRYSTALS
-KYBER

LAC Round5

DSP

40

Level 1: Key Generation on Artix-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

NewHope Classic McEliece FrodoKEM BIKE CRYSTALS-KYBER LAC

41

Level 1: Encapsulation on Artix-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

NewHope Classic McEliece FrodoKEM BIKE CRYSTALS-KYBER LAC Round5

42

Level 1: Decapsulation on Artix-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

NewHope Classic McEliece FrodoKEM BIKE CRYSTALS-KYBER LAC Round5

43

Level 3: Key Generation on Artix-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

Classic McEliece FrodoKEM BIKE CRYSTALS-KYBER LAC

44

Level 3: Encapsulation on Artix-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

Classic McEliece FrodoKEM BIKE CRYSTALS-KYBER LAC Round5

45

Level 3: Decapsulation on Artix-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

Classic McEliece FrodoKEM BIKE CRYSTALS-KYBER LAC Round5

46

Level 5: Key Generation on Virtex-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000 1,000,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

NewHope Classic McEliece SIKE CRYSTALS-KYBER LAC

47

Level 5: Encapsulation on Virtex-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000 1,000,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

NewHope Classic McEliece SIKE CRYSTALS-KYBER LAC Round5

48

Level 5: Decapsulation on Virtex-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000 1,000,000

Sp
ee

d
(O

ps
/s

ec
)

LUTs

NewHope Classic McEliece SIKE CRYSTALS-KYBER LAC Round5

Hardware
Design

Conclusions

Conclusions for Hardware Implementations

CRYSTALS-KYBER, LAC, NewHope, and Round5 comparable
in terms of speed
CRYSTALS-KYBER & NewHope superior
in terms of resource utilization
FrodoKEM and SIKE about 2 orders of magnitude slower
for all operations
BIKE and Classic McEliece about 2 orders of magnitude slower
for key generation and decapsulation

50

Software/Hardware
Co-design

Software/Hardware Codesign

Most time-critical
operation

Software

Hardware

52

SW/HW Co-design: Motivational Example 1

53

Software Software/Hardware

91% major operation(s)
9% other operations

~1% major operation(s) in HW
9% other operations in SW

speed-up ≥ 100

Total Speed-Up ≥ 10

Other
9%

Major
91%

Major
1%

Other
9%

Time saved
90%

SW/HW Co-design: Advantages

54

Focus on a few (typically 1-3) major operations, known to be easily
parallelizable

much shorter development time (at least by a factor of 10)
guaranteed substantial speed-up
high-flexibility to changes in other operations (such as candidate
tweaks)

Insight regarding performance of future instruction set extensions of
modern microprocessors

Possibility of implementing multiple candidates by the same research
group, eliminating the influence of different

design skills
operation subset (e.g., including or excluding key generation)

interface & protocol

optimization target
platform

SW/HW Co-design: Potential Pitfalls

55

Performance & ranking may strongly depend on features of a
particular platform

Software/hardware interface

Support for cache coherency

Differences in max. clock frequency

Performance & ranking may strongly depend on the selected
hardware/software partitioning

First step, not the ultimate solution!

SW/HW Co-design Classification

56

Loosely Coupled
HW Accelerators

Tightly Coupled
HW Accelerators

Hard Processor
Cores

Soft Processor
Cores

Soft processor
cores

• Cortex-A53
• Cortex-A9

• RISC-V • RISC-V

Advantages of Loosely and Tightly Coupled
Accelerators

57

Loosely Coupled Tightly Coupled

Standard interfaces (AXI, TileLink) Low data transfer rate overhead

Ease of development Lower amount of hardware resources

Portability Crypto agility

More flexible at the hardware
development stage

More flexible in the post-silicon phase

Our Focus in Round 2

58

Loosely Coupled
HW Accelerators

Tightly Coupled
HW Accelerators

Hard Processor
Cores

Soft Processor
Cores

Soft processor
cores

• Cortex-A53
• Cortex-A9

• RISC-V • RISC-V

Two Major Types of Platforms

59

System on Chip (SoC) FPGA “Traditional” FPGA

Examples:
• Xilinx Zynq 7000 System on Chip (SoC)

Zynq UltraScale+ MPSoC
• Intel Cyclone V SoC

Stratix 10 SoC FPGAs,

Examples:
Xilinx Artix-7, Virtex-7,

Virtex UltraScale+
Intel Cyclone 10 LP,

Stratix 10

Processor
w/ Memory

& I/O

FPGA
Fabric

FPGA
Fabric

Soft-core
Processor

Two Major Types of Platform

60

Feature Hard Processor Cores Soft Processor Cores

Processor ARM RISC-V

Clock frequency >1 GHz max. 200-450 MHz

Portability similar FPGA SoCs various FPGAs, SoC FPGAs,
and ASICs

Loosely-coupled
accelerators

Yes Yes

Tightly-coupled
accelerators

No Yes

Ease of design
(methodology, tools,
OS support)

Easy Dependent on a particular
soft-core processor and

tool chain

Platform & Experimental Setup

61

Output FIFOInput FIFO Hardware
Accelerator

Zynq Processing System

AXI DMA

FIFO
Interface

FIFO
Interface

AXI Stream
Interface

AXI Stream
Interface

AX
I L

ite

In
te

rf
ac

e

AX
I F

ul
l

In
te

rfa
ce

AX
I L

ite

In
te

rf
ac

e

IR
Q

Clocking wizard

rd_clkwr_clk wr_clk rd_clkclk

UUT_clk

Main Clock

AX
I L

ite

In
te

rfa
ce

AXI TimerAXI Lite
Interface

Xilinx Zynq UltraScale+ MPSoC

PS: Processing System
1.2 GHz ARM Cortex-A53

PL: Programmable Logic
UltraScale+ FPGA logic

Our
Case Studies

SW/HW Codesign: Case Study

63

12 Key Encapsulation Mechanisms (KEMs)
representing

8 out of 9 Round 2 Lattice-Based KEMs
LWE (Learning with Error)-based:

FrodoKEM

RLWR (Ring Learning with Errors)-based:

NewHope, LAC (3a/3b)

RLWR (Ring Learning with Rounding)-based:

Round5 (0d/5d)

Module-LWE-based:

CRYSTALS-KYBER

Module-LWR-based:

Saber

NTRU-based:
NTRU
• NTRU-HPS
• NTRU-HRSS

NTRU Prime
• Streamlined NTRU Prime
• NTRU LPRime

Methodology

64

LightSaber Decapsulation

MatrixVectorMul
43.44%

InnerProduct
43.52%

GenMatrix
5.03%

GenSecret
2.30%Hash

3.30%

Other
2.40%

65

SW/HW Codesign: Step 1 Profiling

SW/HW Co-design: Step 2 SW/HW Partitioning

66

Top candidates for offloading to hardware

From profiling:

Large percentage of the execution time

Small number of function calls

From manual analysis of the code:

Small size of inputs and outputs

Potential for combining with neighboring functions

From knowledge of operations and concurrent computing:

High potential for parallelization

Operations Offloaded to Hardware

• Major arithmetic operations

• Polynomial multiplications

• Matrix-by-vector multiplications

• Vector-by-vector multiplications

• All hash-based operations

• (c)SHAKE128, (c)SHAKE256

• SHA3-256, SHA3-512

67

Sampler

Seed
Mem

Matrix S’
Asym_Mem

8w

SHAKE128

Sign Ext

4w MAC

MAC

MAC

52

13

13

13

Controller

in
fif

o_
da

ta

do

di

ad

di

do

ad-in

ad-o

in
fif

o_
em

pt
y

1 1

7+
lo
g2
(l)

in
fif

o_
re

ad

ou
tf

ifo
_f

ul
l

1

ou
tf

ifo
_w

rit
e

1

7

Sign Ext

Vector b’
Mem

di

doad

52

40

…
.

Piso

Mod p rding

5252

52

13n

13

13

13

13

13

13

outfifo_data

Matrix A
Asym_Mem

di

do

ad-oad-in

97

13

64

Sign Ext

64

Vector b and S
Asym_Mem

di

do

ad-oad-in

10

13

64

6+
lo
g2
(l)

…
.

9+
lo
g2
(l)

b’_ad

6+
lo
g2
(l)

b’
_a
d

13

64

LFSR
13n

52

S’_ad_in

S’_ad_o

5+log2(l)

6+
lo
g2
(l)

6+
lo
g2
(l)

S’
_a
d_
o

5+
lo
g2
(l)

S’
_a
d_
in

Hardware accelerator
of Saber

Saber Decapsulation
Functions offloaded to hardware highlighted in yellow

68

Anonymous Submission to IACR Transactions 17

Algorithm 8 Pseudocode of Saber.KEM.Decaps (sk = (s, z, pkh), pk = (seedA, b), c) [46]
1: m

Õ = Saber.PKE.Dec(s, c)
2: (K̂, r

Õ) = g(pkh, m
Õ)

3: c
Õ = Saber.PKE.Enc(pk, m

Õ; r
Õ)

4: if c = ct
Õ

then

5: return K = H(K̂Õ
, c)

6: else

7: return K = H(z, c)
8: end if

Algorithm 9 Pseudocode of Saber.PKE.Enc (pk = (seedA, b), m œ R2; r) [46]
1: A = gen(seedA) œ R

l◊l
q

2: (K̂, r
Õ) = g(pkh, m

Õ)
3: if r is not specified then

4: r = u({0, 1}256)
5: end if

6: s
Õ = —µ(Rl◊l

q ; r)
7: b

Õ = ((As
Õ + h) mod q) >> (‘q ≠ ‘p) œ R

l◊l
p

8: v
Õ = b

T (sÕ
mod p) œ Rp

9: cm = (vÕ + h1 ≠ 2‘p≠1
mmodp) >> (‘q ≠ ‘T) œ RT

10: return c := (cm, b
Õ)

Algorithm 10 Pseudocode of Saber.PKE.Dec (sk = s, c = (cm, bÕ)) [46]
1: v = b

ÕT (s mod p) œ Rp

2: m
Õ = ((v ≠ 2‘p ≠ ‘T cm + h2) mod p) >> (‘p ≠ 1) œ R2

3: return m
Õ

of the hardware accelerator, Seed_Mem and Vector_b_and_S_Asym_Mem, using the 64-bit478

input bus infifo_data, before the encapsulation or decapsulation starts.479

Unlike in the pseudocode, in the hardware accelerator, vector sÕ is generated first. The480

public key pk is hashed using SHA3-256. The result is then hashed, together with the481

random value m, using SHA3-512 to obtain K̂ Õ and the seed r. r is used for encryption,482

and K̂ Õ is used to compute the shared secret at the end of encapsulation. The 256-bit seed r483

is loaded into Seed_Mem. The generation of sÕ involves SHAKE128 followed by the Sampler,484

generating w-bit integers using a centered binomial distribution (CBD). The obtained485

samples, representing the coe�cients of the vector sÕ, are stored in the asymmetric memory486

Matrix_S’_Asym_Mem.487

Subsequently, SHAKE128 is used to generate elements of the l x l matrix A, with each488

element representing a polynomial. In order to reduce the execution time and the size of489

Matrix_A_Asym_Mem memory, only one row of the A matrix is generated at a time, and used490

for the computations of bÕ = (AsÕ + h) mod q, in parallel with calculating the subsequent491

row of A. h in the above equation is a constant. The elements of A are multiplied by the492

corresponding elements of sÕ, read from Matrix_S’_Asym_Mem, sign-extended to 13-bits,493

and stored in the n-stage LFSR. With 4 coe�cients loaded per clock cycle, the initialization494

of the 256-stage LFSR takes 64 clock cycles. The temporary results are stored in the495

registers shown to the right of MACs in Fig. 6.496

The internal structure of the Saber LFSR is shown in Fig. 8. The feedback contains the497

multiplication by -1, corresponding to performing calculations mod Xn + 1. Each shift of498

this LFSR corresponds to the multiplication of the polynomial representing current-state499

by X.500

Each coe�cient of bÕ is then shifted right by 3 positions (corresponding to the division501

by q/p=213/210=8) and transferred back to the processor using the outfifo_data bus. In502

Anonymous Submission to IACR Transactions 17

Algorithm 8 Pseudocode of Saber.KEM.Decaps (sk = (s, z, pkh), pk = (seedA, b), c) [46]
1: m

Õ = Saber.PKE.Dec(s, c)
2: (K̂, r

Õ) = g(pkh, m
Õ)

3: c
Õ = Saber.PKE.Enc(pk, m

Õ; r
Õ)

4: if c = ct
Õ

then

5: return K = H(K̂Õ
, c)

6: else

7: return K = H(z, c)
8: end if

Algorithm 9 Pseudocode of Saber.PKE.Enc (pk = (seedA, b), m œ R2; r) [46]
1: A = gen(seedA) œ R

l◊l
q

2: (K̂, r
Õ) = g(pkh, m

Õ)
3: if r is not specified then

4: r = u({0, 1}256)
5: end if

6: s
Õ = —µ(Rl◊l

q ; r)
7: b

Õ = ((As
Õ + h) mod q) >> (‘q ≠ ‘p) œ R

l◊l
p

8: v
Õ = b

T (sÕ
mod p) œ Rp

9: cm = (vÕ + h1 ≠ 2‘p≠1
mmodp) >> (‘q ≠ ‘T) œ RT

10: return c := (cm, b
Õ)

Algorithm 10 Pseudocode of Saber.PKE.Dec (sk = s, c = (cm, bÕ)) [46]
1: v = b

ÕT (s mod p) œ Rp

2: m
Õ = ((v ≠ 2‘p ≠ ‘T cm + h2) mod p) >> (‘p ≠ 1) œ R2

3: return m
Õ

of the hardware accelerator, Seed_Mem and Vector_b_and_S_Asym_Mem, using the 64-bit478

input bus infifo_data, before the encapsulation or decapsulation starts.479

Unlike in the pseudocode, in the hardware accelerator, vector sÕ is generated first. The480

public key pk is hashed using SHA3-256. The result is then hashed, together with the481

random value m, using SHA3-512 to obtain K̂ Õ and the seed r. r is used for encryption,482

and K̂ Õ is used to compute the shared secret at the end of encapsulation. The 256-bit seed r483

is loaded into Seed_Mem. The generation of sÕ involves SHAKE128 followed by the Sampler,484

generating w-bit integers using a centered binomial distribution (CBD). The obtained485

samples, representing the coe�cients of the vector sÕ, are stored in the asymmetric memory486

Matrix_S’_Asym_Mem.487

Subsequently, SHAKE128 is used to generate elements of the l x l matrix A, with each488

element representing a polynomial. In order to reduce the execution time and the size of489

Matrix_A_Asym_Mem memory, only one row of the A matrix is generated at a time, and used490

for the computations of bÕ = (AsÕ + h) mod q, in parallel with calculating the subsequent491

row of A. h in the above equation is a constant. The elements of A are multiplied by the492

corresponding elements of sÕ, read from Matrix_S’_Asym_Mem, sign-extended to 13-bits,493

and stored in the n-stage LFSR. With 4 coe�cients loaded per clock cycle, the initialization494

of the 256-stage LFSR takes 64 clock cycles. The temporary results are stored in the495

registers shown to the right of MACs in Fig. 6.496

The internal structure of the Saber LFSR is shown in Fig. 8. The feedback contains the497

multiplication by -1, corresponding to performing calculations mod Xn + 1. Each shift of498

this LFSR corresponds to the multiplication of the polynomial representing current-state499

by X.500

Each coe�cient of bÕ is then shifted right by 3 positions (corresponding to the division501

by q/p=213/210=8) and transferred back to the processor using the outfifo_data bus. In502

SW/HW Co-design: Step 3 Accelerator Design

69

Target: Minimum Execution Time
Hardware:

Register-Transfer Level methodology with VHDL or Verilog
Block diagram of the Datapath
Algorithmic State Machine (ASM) chart of the Controller

Software:

Input/Output transfers
Transfer of control between the processor and the accelerator

Detailed hierarchical block diagrams
developed for the entire hardware accelerator

70

Sampler

Seed
Mem

Matrix S’
Asym_Mem

8w

SHAKE128

Sign Ext

4w MAC

MAC

MAC

52

13

13

13

Controller

in
fif

o_
da

ta

do

di

ad

di

do

ad-in

ad-o

in
fif

o_
em

pt
y

1 1

7+
lo
g2
(l)

in
fif

o_
re

ad

ou
tf

ifo
_f

ul
l

1

ou
tf

ifo
_w

rit
e

1

7

Sign Ext

Vector b’
Mem

di

doad

52

40

…
.

Piso

Mod p rding

5252

52

13n

13

13

13

13

13

13

outfifo_data

Matrix A
Asym_Mem

di

do

ad-oad-in

97

13

64

Sign Ext

64

Vector b and S
Asym_Mem

di

do

ad-oad-in

10

13

64

6+
lo
g2
(l)

…
.

9+
lo
g2
(l)

b’_ad

6+
lo
g2
(l)

b’
_a
d

13

64

LFSR
13n

52

S’_ad_in

S’_ad_o
5+log2(l)

6+
lo
g2
(l)

6+
lo
g2
(l)

S’
_a
d_
o

5+
lo
g2
(l)

S’
_a
d_
in

LightSaber Decapsulation

MatrixVectorMul
43.44%

InnerProduct
43.52%

GenMatrix
5.03%

GenSecret
2.30%

Hash
3.30%

Other
2.40%

Execution time saved
88.83%

Other
2.40%

Hardware
Accelerator

8.77%

Total Speed-Up = 100/11.17=9.0

Execution time
remaining

11.17%

Accelerator Speed-Up = 97.60/8.77=11.1

Execution time of functions
to be moved to hardware

97.60%
Execution time of functions

remaining in software
2.40% 71

Results

72

SW Part Sped up by HW[%]: Decapsulation

73

10
0.

0

10
0.

0

10
0.

0

10
0.

0

10
0.

0

10
0.

0

99
.3

99
.0

97
.6

94
.0

97
.9

97
.4

10
0.

0

10
0.

0

10
0.

0

10
0.

0

10
0.

0

99
.4

98
.0

98
.1

97
.6

96
.8

98
.2

97
.8

10
0.

0

10
0.

0

10
0.

0

10
0.

0

10
0.

0

10
0.

0

98
.4

97
.1

90.0

92.0

94.0

96.0

98.0

100.0

Kyber LAC-v3a LAC-v3b NewHope R5ND_CCA
_KEM_0d

R5ND_CCA
_KEM_5d

NTRU
-HPS

NTRU
-HRSS

NTRU
LPRime

Saber Str NTRU
Prime

FrodoKEM

Level 1 Level 2 Level 3 Level 4 Level 5

Round2 KEMs: SW/HW Results for Decaps
8.
9 13
.8

17
.2

9.
3 16
.8 25
.8

9.
9 18
.6

10
.7

13
.7 18
.3

10
.4 17
.0

19
.9

13
.0 20
.5 30
.0

9.
7 14
.8 22
.4

16
.4 21
.9

23
.8

25
.0 30
.5 36
.6

14
.5

17
.5

11
.7

31
1.
9/

31
.1
/9

78
.4

71
2.
1/

37
.6
/1

,1
16

.5

1,
27

3.
2/

43
.3
/1

,8
03

.4

6.
6 6.
8 6.
9

6.
7 6.

6

6.
7

6.
3

6.
3

6.
3 6.
3 6.
4

6.
6 6.

8 6.
9

6.
7

7.
1

6.
8

31
.6 33

.3 32
.7

7.
1 6.
7 7.
0 7.
1 8.

2 10
.7

19
.6 19
.9

34
.6

11
.3

16
.5

21
.9

43
.4 50

.3 56
.0

38
.8

45
.4

50
.2

61
.2 69

.7

89
.3

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

1 3 5 1 3 5 1 5 1 3 5 1 3 5 1 3 5 1 3 5 2 3 4 2 3 4 1 3 1 1 3 5

LAC-v3b R5ND_CCA
_KEM_5d

New
Hope

Kyber LAC-v3a R5ND_CCA
_KEM_0d

Saber Str NTRU
Prime

NTRU
LPRime

NTRU
- HPS

NTRU
-HRSS

FrodoKEM

Hardware Transfer Software 74

75

Round2 KEMs: SW/HW Results for Decaps
9.

7 14
.8 22

.4

16
.4 21
.9

23
.8

25
.0 30
.5 36

.6

14
.5

17
.5

11
.7

31
1.

9/
31

.1
/

97
8.

4

71
2.

1/
37

.6
/

1,
11

6.
5

1,
27

3.
2/

43
.3

/
1,

80
3.

4

31
.6 33

.3 32
.7

7.
1 6.

7 7.
0 7.
1 8.

2 10
.7

19
.6 19

.9

34
.6

11
.3 16

.5 21
.9

43
.4 50

.3 56
.0

38
.8 45

.4

50
.2

61
.2 69

.7

89
.3

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

1 3 5 2 3 4 2 3 4 1 3 1 1 3 5

Saber Str NTRU
Prime

NTRU
LPRime

NTRU
- HPS

NTRU
-HRSS

FrodoKEM

Hardware Transfer Software

1
2 3

4

5

6

1

2 3

4

5

1
2

3

4

SW Part Sped up by HW[%]: Encapsulation

76

99
.7

99
.7

99
.6

99
.5

99
.5

99
.4

99
.2

98
.6

98
.5

94
.6

98
.4

96
.9

99
.7

99
.7

99
.7

99
.6

99
.6

99
.6

98
.9

98
.5

97
.2 97

.5

98
.6

97
.3

99
.8

99
.8

99
.8

99
.8

99
.6

99
.6

99
.1

98
.6

90

92

94

96

98

100

LAC-v3a LAC-v3b NewHope Kyber NTRU
-HPS

R5ND_CCA
_KEM_0d

R5ND_CCA
_KEM_5d

NTRU
-HRSS

Saber NTRU
LPRime

Str NTRU
Prime

FrodoKEM

Level 1 Level 2 Level 3 Level 4 Level 5

Round2 KEMs: SW/HW Results for Encaps
6.

8 10
.0 12

.6

7.
0 12

.8 19
.6

7.
2 13

.4

7.
3 10

.0 14
.2

8.
4 13

.1 15
.4

10
.1 15

.8 23
.2

16
.2 19

.6

17
.8 21

.9 26
.0

7.
6 12

.0 18
.7 21

.9 26
.7 31

.6

10
.2

31
4.

7/
 3

7.
8/

 8
70

.5

71
7.

0/
43

.8
/8

81
.7

1,
27

9.
5/

48
.9

/8
57

.8

6.
6 6.

8 6.
9

6.
5

6.
6

6.
8

6.
2

6.
3

6.
4 6.

4

6.
3

6.
6

6.
8 6.

9

6.
8

6.
8

7.
0

9.
3

11
.9

6.
6

6.
7

7.
0

35
.8

37
.2

36
.4

7.
0

7.
1

7.
3

15
.1

15
.6

16
.9

24
.2

27
.0

30
.4

5.
6

7.
8

10
.2

22
.7

25
.7

28
.5

43
.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 3 5 1 3 5 1 5 1 3 5 1 3 5 1 3 5 1 3 2 3 4 1 3 5 2 3 4 1 1 3 5

LAC-v3b R5ND_CCA
_KEM_5d

New
Hope

Kyber LAC-v3a R5ND_CCA
_KEM_0d

NTRU
- HPS

Str NTRU
Prime

Saber NTRU
LPRime

NTRU
-HRSS

FrodoKEM

Hardware Transfer Software 77

78

Round2 KEMs: SW/HW Results for Encaps
16

.2 19
.6

17
.8 21

.9 26
.0

7.
6 12

.0 18
.7 21

.9 26
.7 31

.6

10
.2

31
4.

7/
 3

7.
8/

 8
70

.5

71
7.

0/
43

.8
/

88
1.

7

1,
27

9.
5/

48
.9

/
85

7.
8

9.
3 11

.9

6.
6 6.

7 7.
0

35
.8 37

.2

36
.4

7.
0

7.
1

7.
3

15
.1

15
.6

16
.9

24
.2

27
.0

30
.4

5.
6

7.
8

10
.2

22
.7

25
.7

28
.5

43
.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 3 2 3 4 1 3 5 2 3 4 1 1 3 5

NTRU
- HPS

Str NTRU
Prime

Saber NTRU
LPRime

NTRU
-HRSS

FrodoKEM

Hardware Transfer Software

1

2 3
4

5

6

1
2

3
4

5

1 2
3

4

79

Resource Utilization on Zynq UltraScale+
7,

21
3

7,
08

7

7,
01

5

12
,3

43

12
,5

66

12
,5

55

42
,5

78 49
,7

35

45
,9

01 55
,0

54 64
,0

22

48
,7

73

62
,7

97 70
,0

66

78
,3

79

1 3 5 1 3 5 1 3 5 2 3 4 1 3 5 2 3 4

FrodoKEM Saber NTRU
-HPS

NTRU
LPRime

NTRU
-HRSS

Str NTRU
Prime

LUT

6,
64

7

6,
69

3

6,
61

0 11
,2

88

11
,6

19

11
,8

81

22
,7

17 30
,5

99

39
,4

26 45
,1

33 50
,1

20

25
,1

78

33
,5

31 38
,1

44 42
,2

74

1 3 5 1 3 5 1 3 5 2 3 4 1 3 5 2 3 4

FrodoKEM Saber NTRU
-HPS

NTRU
LPRime

NTRU
-HRSS

Str NTRU
Prime

FF

32 32 32

25
6

25
6

25
6

67
7

82
1

0 0 0

70
1

0 0 0

1 3 5 1 3 5 1 3 5 2 3 4 1 3 5 2 3 4

FrodoKEM Saber NTRU
-HPS

NTRU
LPRime

NTRU
-HRSS

Str NTRU
Prime

DSP

13
.5

17
.0 17
.5

3.
5

3.
5

3.
5

8.
5

8.
5

8.
0

8.
0

8.
0

2.
5

9.
0

9.
0

9.
0

1 3 5 1 3 5 1 3 5 2 3 4 1 3 5 2 3 4

FrodoKEM Saber NTRU
-HPS

NTRU
LPRime

NTRU
-HRSS

Str NTRU
Prime

BRAM

SW/HW
Co-Design

Conclusions

80

SW/HW Co-design: Conclusions

81

Unless all operations offloaded to hardware, limited insight on ranking of
pure hardware implementations

FrodoKEM much slower than other lattice-based KEMs

Concerns regarding resource utilization:

NTRU-HPS and NTRU-HRSS : large number of DSP units

Streamlined NTRU Prime and NTRU LPrime : large number of LUTs
(but no DSP units)

In SABER & FrodoKEM resource utilization almost independent of the
security level

Very significant step toward the development of full hardware
implementations

High-Level
Synthesis

High-Level Synthesis (HLS)

83

High Level Language
(C, C++, SystemC)

Hardware Description Language
(VHDL or Verilog)

High-Level Synthesis
(HLS)

Popular HLS Tools

84

Commercial (FPGA-oriented):

Academic:
• Bambu: Politecnico di Milano, Italy
• DWARV: Delft University of Technology, The Netherlands
• GAUT: Universite de Bretagne-Sud, France
• LegUp: University of Toronto, Canada

• Vivado HLS: Xilinx – selected for this study
• FPGA SDK for OpenCL: Intel

Case for HLS in Crypto Competitions

All submissions include reference implementations in C
Development time potentially decreased several times

All candidates can be implemented by the same
group, and even the same designer, reducing the bias
Results from High-Level Synthesis could have a large impact in
early stages of the competitions and help narrow down the
search (saving thousands of man-hours of cryptanalysis)
Potential for quickly detecting suboptimal code written manually

85

GMU Case Studies

86

Ekawat Homsirikamol
a.k.a “Ice”

• 5 Final SHA_3 Candidates + SHA-2
Applied Reconfigurable Computing,
ARC 2015, Bochum, Apr. 2015

• 16 Round 3 CAESAR Candidates
+ AES-GCM
Field Programmable Technology
Conference, Melbourne, Dec. 2017

HLS vs. Manual: SHA-3 Candidates Revisited

87

Manual HLS

Keccak

Keccak

Groestl
GroestlJH

JH
SHA-2 SHA-2

BLAKE
Skein

BLAKE Skein

Altera Stratix III FPGA

HLS vs. Manual: Round 3 CAESAR Candidates

88

Suboptimal
HLS

> 1.30 [0.70, 0.90)
Manual may be

improved

[0.90, 1.30]
Manual and HLS

acceptable

Throughput Manual / Throughput HLS for Xilinx Virtex-7

Transformation to HLS-ready C/C++ Code

1. Interface mapping

2. Addition of HLS Tool directives (pragmas)

3. Hardware-driven code refactoring

89

Sources of Productivity Gains

• Higher-level of abstraction

• Focus on datapath rather than control logic

• Debugging in software (C/C++)

• Faster run time

• No timing waveforms

90

Software/Hardware Codesign with HLS

Most time-critical
operation

Software

HLS-Generated Hardware

91

SW/HW Co-design: GMU Case Study
Applied Reconfigurable Computing, ARC 2020

92

3 Lattice-Based
Key Encapsulation Mechanisms (KEMs)

representing
2 NIST PQC Round 2 Submissions
1 NIST PQC Round 1 Submission

• CRYSTALS-KYBER
• Round 2 (R2)
• Round 1 (R1)

• NewHope
• Round 2 (R2)

Major Findings

93

Almost identical number of clock cycles

Identical number of DSP units

Identical number of BRAMs
(except of 40% increase in Kyber R2)

Overhead: Clock Frequency [MHz]

94

Algorithm RTL HLS HLS/RTL
1: NewHope 476 454 0.95

5: NewHope 476 455 0.96

1: Kyber R1 500 455 0.91

3: Kyber R1 500 455 0.91

5: Kyber R1 500 455 0.91

1: Kyber R2 500 455 0.91

3: Kyber R2 500 416 0.83

5: Kyber R2 500 416 0.83

Clock Frequency reduced by 17% or less

Overhead: LUTs

95

Algorithm RTL HLS HLS/RTL
1: NewHope 1,040 1,181 1.14

5: NewHope 842 1,110 1.32

1: Kyber R1 2,185 2,788 1.28

3: Kyber R1 3,318 4,205 1.27

5: Kyber R1 4,363 5,562 1.27

1: Kyber R2 2,040 2,325 1.14

3: Kyber R2 3,054 5,379 1.76

5: Kyber R2 4,055 7,111 1.75

#LUTs increased by 14%-76% or less

Comparison to the Previous Work in HLS
NTT only

96

K. Kawamura, M. Yanagisawa, and N. Togawa,
“A loop structure optimization targeting high-level synthesis of fast
number theoretic transform,”
in Int. Symposium on Quality Electronic Design, ISQED 2018.

6 No Author Given

At this point, the final functional verification, achieved by comparing inter-
mediate results and final outputs generated by the SW-only program and the
SW/HW program guarantees the correctness of the hardware accelerator and
the DMA transfer. If both the SW-only program and the SW/HW program
realize the same functionality, then the correct speed-up can be measured.

4.3 High Level Synthesis: Block Diagram versus Space Exploration

There are two approaches to implement hardware accelerators in HLS:

– SE/HLS: Implement HLS code to run as fast as possible by experimenting
with design exploration; the final hardware architecture is unknown until
the best result is achieved;

– BD/HLS: Develop block diagram, implement HLS code following this block
diagram.

Both SE/HLS and BD/HLS approaches inherit the advantages of HLS: quicker
verification and quicker development than in traditional RTL.

In the SE/HLS approach, a small portion of the total development time is
spent on writing HLS code and verifying its functionality. The rest of the time
is devoted to design space exploration using pragma directives. There are 24
pragma directives in HLS; di↵erent combinations will lead to di↵erent architec-
tures. The impact of a particular pragma directive is heavily dependent on the
code structure and the algorithm. Some directives may have no impact at all. Di-
rective such as unroll, pipeline, dataflow may replicate same hardware resources
multiple times, which increases the resources utilization significantly. Further-
more, the HLS synthesis process may take a lot of time depending on the number
of hardware architectures it creates, e.g., partial unrolling vs. full unrolling of a
big loop. The HLS resource usage reports are usually inaccurate, which makes
comparison between HLS reports unreliable. The exact result can only be ob-
tained after post-place and route in Vivado. Eventually, the HLS design by space
exploration may create sub-optimal hardware architecture.

In BD/HLS approach, the large portion of the total development time is
spent on developing a block diagram and implementing it in HLS-ready C. The
rest of the time is spent on verification. Since the exact hardware architecture
is known beforehand, space exploration is not required.

Structure of HLS code is the foundation for SE/HLS and BD/HLS code.
With well-structured code, BD/HLS can outperform SE/HLS. For example, the

Fig. 2. BD/HLS versus SE/HLS development timeline

Space-Exploration (SE) based vs. Block Diagram (BD) based
approach

Time spent on particular phases of the development process:

Comparison to Previous Work in HLS
1024-point NTT only

97

BRAMs DSPs LUTs FFs Cycles

Previous work 11.5 10 21,167 16,402 7,597

Our work 10 4 1,110 1,342 4,776

Ratio 1.15 2.5 19 12 1.6

Previous work optimized for area

BRAMs DSPs LUTs FFs Cycles

Previous work 21.5 19 38,984 30,498 5,291

Our work 10 4 1,110 1,342 4,776

Ratio 2.15 4.75 35 23 1.1

Previous work optimized for speed

Additional Advantages of HLS vs. RTL

98

Easy integration of software and hardware
within the Xilinx SDSoC environment

No need for manually developed
Bare Metal or Linux drivers

for the communication between
the microprocessor and hardware accelerator

HLS/SDSoC vs. RTL/Bare Metal

99

14 No Author Given

Table 6. Speed up of Software/Hardware Codesign vs. Pure Software

Algorithm
Total SW

(µs)

Total SW
NTT
(µs)

%SW NTT
Total SW/HW

(µs)

Total
Speed-up

@Max Freq
BM SDSoC BM SDSoC

ENCAPSULATION
NewHope 1 360.3 199.8 55% 175.2 180.3 2.06 2.00
NewHope 5 737.0 438.1 59% 324.0 332.2 2.27 2.22
Kyber R1-1 389.2 240.9 62% 158.9 161.1 2.45 2.42
Kyber R1-3 582.3 368.3 63% 224.8 228.7 2.59 2.55
Kyber R1-5 826.9 509.4 62% 329.6 334.0 2.51 2.48
Kyber R2-1 328.5 237.8 72% 101.1 103.4 3.25 3.18
Kyber R2-3 533.9 343.0 64% 201.5 205.7 2.65 2.60
Kyber R2-5 785.2 495.4 63% 301.8 306.4 2.60 2.56

DECAPSULATION
NewHope 1 427.5 273.5 64% 177.8 184.6 2.40 2.32
NewHope 5 895.7 598.0 67% 334.0 347.1 2.68 2.58
Kyber R1-1 483.2 340.8 71% 161.9 165.2 2.98 2.92
Kyber R1-3 710.4 504.2 71% 226.5 231.8 3.14 3.06
Kyber R1-5 992.1 682.4 69% 332.0 338.0 2.99 2.94
Kyber R2-1 429.5 315.5 73% 133.3 136.6 3.22 3.14
Kyber R2-3 667.8 476.8 71% 211.1 216.8 3.16 3.08
Kyber R2-5 950.8 662.9 70% 310.0 316.4 3.07 3.00

Traditional RTL SW/HW Codesign often uses Bare Metal (BM) to han-
dle transfer between CPU and FPGA. The DMA in BM is often implemented
manually. Contrary to that, SDSoC creates an abstraction layer of the inter-
face handler. As a result, switching from software to hardware is very easy. To
demonstrate the overhead of abstraction in using SDSoC, the best selected trans-
fer interface in SDSoC is compared with Bare Metal in Table 5. Additionally,
the Transfer Overhead column is the percentage of Total Transfer Time
over the Total SW/HW in Table 6.

In Table 6, timing results are summarized. The Total SW is the software
only execution time, the Total SW NTT column is the time spent on NTT
operations in SW, %SW NTT is the percentage of the total execution time in
software devoted to NTT, the Total SW/HW is the total time after o✏oading
the critical function (NTT) to hardware. The Total Speed-up @Max Freq is
the ratio between Total SW and Total SW/HW. This speed-up is roughly
equal between the SDSoC and Bare Metal approaches.

7 Conclusions

Using HLS and SDSoC are two promising approaches to benchmarking SW/HW
implementations of PQC. With the help of these approaches, the development
time is substantially reduced, with the relatively small penalty in terms of the

Total SW/HW execution time
increased by 3% or less!

RTL HLS

Reality
Check

NIST Announcement on July 22, 2020

101

Round 3 Candidates

Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+

NIST Announcement on July 22, 2020

102

NISTIR 8309
“Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process,”
by Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody,
Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone

available https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

No references to papers on hardware implementations.
All decisions based solely on security analysis
and (to lower extent) performance in software.

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

NSA’s Cybersecurity Perspective on PQC

103

Lattice-Based Cryptography

“These systems are fairly well-studied in cryptologic literature,
and analysis suggests that these systems
can be secure when well-parameterized.
We agree with the NIST assessment […] that these are
among the most efficient post-quantum designs.
Based on their history of analysis and implementation efforts,
NSA CSD [Cybersecurity Directorate] expects that
a NIST-candidate lattice-based signature and
a NIST-candidate lattice-based key encapsulation mechanism
will be approved for NSS [National Security Systems]."

NSA’s Cybersecurity Perspective on PQC

104

Hash-Based Signatures

“These systems are also fairly well-studied in cryptologic literature,
and analysis suggests that these systems can be secure when
well-parameterized. However, the stateful versions
have a limited number of allowable signatures per public key and
require the signer to maintain an internal state.
Because of this, they are not suitable for all applications.
NSA CSD expects that the stateful signatures LMS and XMSS
will be standardized by NIST in NIST SP 800-208 and approved
for NSS solutions for certain niche applications
where maintaining state is not a problem.”

NSA’s Cybersecurity Perspective on PQC

105

Future

“At the present time, NSA CSD does not anticipate the need to
approve other post-quantum cryptographic technologies
for NSS usage, but recognizes circumstances could change
going forward. A variety of factors—including
confidence in security and performance, interoperability,
systems engineering, budgeting, procurement, and
other requirements—could affect such decisions.”

���
���

���
�����

�����
�����

�����
������

������

������

�������

�������

�������

���������

���������

���

���

���

�����

�����

�����

�����

������

6,.(��,VRJHQ\�

6$%(5��0/:5�

&5<67$/6�.<%(5��0/:(�

1758�3ULPH��1758�

1758��1758�

%,.(��6KRUW�+DPPLQJ�

+4&��6KRUW�+DPPLQJ�

)URGR.(0��/:(�

&ODVVLF�0F(OLHFH��*RSSD�

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

3XEOLF�.H\��E\WHV�

&
LS
KH

UW
H[

W�
�E

\W
HV

�

Round 3 Key Encapsulation Mechanisms

106

�� �� �� ���
���

���
�����

�����
�����

�����
������

������

������

�������

�������

�������

���������

���������

���������

��

��

���

���

���

�����

�����

�����

�����

������

������

������

�������

�������

�������

3LFQLF��=.3�

63+,1&6���+DVK�EDVHG�

)$/&21��+DVK�DQG�6LJQ�

&5<67$/6�',/,7+,80��)LDW�6KDPLU�

5DLQERZ��829�

*H066��+)(�

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

6HFXULW\�/HYHO��

3XEOLF�.H\��E\WHV�

6
LJ
QD

WX
UH
�6
L]
H�
�E

\W
HV

�

Round 3 Digital Signature Schemes

107

Gazing
the PQC
Crystal

Ball
(use with caution!)

Candidates to Beat

109

8/18/20, 6:15 PMPQCrypto 2017

Page 1 of 5https://2017.pqcrypto.org/conference/schedule.html

PQCrypto 2017
The Eighth International Conference on Post-

Quantum Cryptography
Utrecht, the Netherlands, June 26–28, 2017

Home
Registration
Stipends
Program
Accepted
papers
Invited
speakers
About Utrecht
Venue
Accommodation
Travel and Visa
Important Dates
Call for Papers
Submission
Program
Committee
Support
Whom to
contact

Related events

PQCRYPTO
School
Executive
School

Schedule for PQCrypto 2017

Monday
09:00 –
09:25 registration

09:25 –
09:30 opening (Tanja Lange)

Invited talk (chair: Tsuyoshi Takagi)
09:30 –
10:30 Jaya Baloo

EU Quantum Flagship (slides)
10:30 –
11:00 coffee break

Security models (chair: Peter Schwabe)
11:00 –
11:25 Bart Mennink and Alan Szepieniec

XOR of PRPs in a Quantum World (slides)
11:25 –
11:50 Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila

Transitioning to a Quantum-Resistant Public Key Infrastructure (slides)
11:50 –
12:15

Tommaso Gagliardoni, Nikolaos P. Karvelas, and Stefan
Katzenbeisser
ORAMs in a Quantum World (slides)

12:15 –
13:30 lunch break

Code-based crypto I (chair: Rainer Steinwandt)
13:30 –
13:55 Pierre Loidreau

A new rank metric codes based encryption scheme (slides)
13:55 –
14:20 Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor

Ouroboros: a simple, secure and efficient key exchange protocol
based on coding theory (slides)

8/18/20, 6:15 PMPQCrypto 2017

Page 4 of 5https://2017.pqcrypto.org/conference/schedule.html

16:30 –
17:00 NIST Q&A session

Daniel Smith-Tone, Ray Perlner, and Dustin Moody (slides for opening
statment)

18:00 – Reception and dinner in Museum Speelklok
(Reception and visit of exhibition at 18:00, dinner at 19:00)

Wednesday
Invited talk (chair: Andreas Hülsing)

09:00 –
10:00 Vadim Lyubashevsky

Standardizing Lattice Crypto and Beyond (slides)
10:00 –
10:30 coffee break

Lattice-based crypto II (chair: Daniel J. Bernstein)
10:30 –
10:55 Boru Gong and Yunlei Zhao

Cryptanalysis of RLWE-Based One-Pass Authenticated Key Exchange
(slides)

10:55 –
11:20 Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer

A Hybrid Lattice Basis Reduction and Quantum Search Attack on LWE
(slides)
Multivariate crypto II (chair: Bo-Yin Yang)

11:20 –
11:45 Dustin Moody, Ray Perlner, and Daniel Smith-Tone

Improved Attacks for Characteristic-2 Parameters of the Cubic ABC
Simple Matrix Encryption Scheme (slides)

11:45 –
12:10 Jeremy Vates and Daniel Smith-Tone

Key Recovery Attack for All Parameters of HFE- (slides)
12:10 –
12:35 Daniel Cabarcas, Daniel Smith-Tone, and Javier A. Verbel

Practical Key Recovery Attack for ZHFE (slides)
12:35 –
12:45 closing remarks (slides announcing PQCrypto 2018)

12:45 –
14:00 lunch break

Support

CRYSTALS
Cryptographic Suite for Algebraic Lattices

Joppe Bos Leo Ducas
Eike Kiltz Tancrede Lepoint

Vadim Lyubashevsky John Schanck
Peter Schwabe Gregor Seiler Damien Stehle

KEM:
CRYSTALS-KYBER

Digital Signature:
CRYSTALS-DILITHIUM

Close Matchups

110

CRYSTALS-KYBER

CRYSTALS-DILITHIUM

SABER NTRU

FALCON

Digital Signatures

KEMs

Module-LWE:
Module Learning

with Errors

Module-LWR:
Module Learning

with Rounding

SVP
Shortest Vector

Problem

Fiat-Shamir with aborts
Module-LWE

& Module SIS
(Short Integer Solution)

Hash & Sign
SIS

(Short Integer Solution)
over NTRU Lattices

Round 3 Candidates without HW or SW/HW
Implementations

111

Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+

HLS may be
still justified

RTL expected

Round 3 Candidates in Need of Improved
Implementations

112

Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+

Other Potential Research Directions

113

Current
Work

PQC Hardware
Accelerators
for RISC-V

Constant-Time
High-Speed Hardware

Lightweight
Implementations
Protected Against
Side-Channel Attacks

Upcoming Milestones

Oct. 1, 2020: Deadline for updated Round 3 submission
packages

Spring 2021: Third NIST PQC Conference

Fall 2021: Deadline for submitting comments

2022-2023: Draft standard(s) released for public
comments

2024: First PQC standard(s) published

114

PQC Opportunities & Challenges

Efficient hardware implementations of Round 3
candidates in FPGAs and ASICs sought by NIST to prove
the final candidates’ suitability for high-performance
applications and constrained environments

Potential new standards in other countries, including
China

Likely Instruction Set Extensions for multiple major
microprocessors

First PQC industry trials

Multiple opportunities for collaboration!
115

Q&A

116

CERG: http://cryptography.gmu.edu
ATHENa: http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!

https://eprint.iacr.org/2020/795

Choose: PQC

