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Where is George Mason University?

www.intostudy.com/mason | 7

#2
Happiest Place in America
(SmartAsset 2016)

#7
Fastest growing US metro 
area, with one of the lowest 
unemployment rates
(Bloomberg 2013)
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Washington, DC
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• East Coast of the U.S.A.
• Near Washington D.C.
• 4 hour drive from New York
• 30 min drive to the Washington Monument,

White House, and the U.S. Capitol
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Advantages of the Location

National Science Foundation

National Institute of Standards
and Technology

Defense Advanced Research 
Projects Agency

Amazon Headquarters 2
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CERG: Cryptographic Engineering Research Group
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3 faculty members, 8 Ph.D. students,
5 MS students, 7 affiliated scholars



CERG Group Members supporting PQC

Farnoud Viet Duc 

PhD Students

SW/HW Codesign
RTL Accelerators

Experimental Setup for 
Timing Measurements

CAD Tools

RTL Design of
HW Accelerators
for Lattice-based

& Code-based PQC

HLS Design of
HW Accelerators
for Lattice-based

PQC
NEON-based SW
implementations
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Recent
Graduate

Kamyar
RTL Design of

HW Accelerators
for Lattice-based

PQC
Side-Channel

Analysis
RISC-V Accelerators



CERG Group Members supporting PQC

Bakry

PhD Students

Experimental Setup
for Side-Channel 

Analysis
Lightweight

Architectures
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Javad

RTL Design of
HW Accelerators

for Symmetric-based
PQC

Michał Mike 

Affiliated
Scholar

Faculty

Sampling 
in Hardware

RTL Design of
HW Accelerators

for Lattice-based PQC
& Lattice Sieving

Military University 
of Technology in 
Warsaw, Poland
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Cryptographic Contests 2007-Present

Year07  08  09  10   11  12  13 14  15 16  17 18 19  20  21 22

SHA-3

51 hash functions ® 1 winner
X.2007 X.2012

CAESAR
I.2013

57 authenticated ciphers 
® multiple winners

II.2019

Post-Quantum

56 Lightweight authenticated ciphers 
& hash functions 

VIII.2018
Lightweight

69 Public-Key Post-Quantum 
Cryptography Schemes

XII.2016

TBD

TBD

Completed

In progressX.2012X.2012



Evaluation Criteria
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Security

Software  Efficiency Hardware Efficiency 

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers



U.S. Open of Ciphers

11Source: https://www.bicsport.com/



NIST PQC Standardization Process
Feb. 2016: NIST announcement of standardization plans at 
PQCrypto 2016, Fukuoka, Japan 

Dec. 2016: NIST Call for Proposals and Request for 
Nominations for Public-Key Post-Quantum Cryptographic 
Algorithms

Nov. 30, 2017: Deadline for submitting candidates

Dec. 2017:  Announcement of the First Round Candidates

Apr. 2018:  The First NIST PQC Standardization Conference

Nov. 30, 2018: Deadline for mergers of similar submissions

Jan. 30, 2019:  Announcement of candidates qualified to 
Round 2
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NIST PQC Standardization Process

Mar. 15, 2019:  Deadline to submit tweaks for Round 2 
candidates
April 10, 2019:  Publication of Round 2 submission packages
Aug. 22-24, 2019: Second NIST PQC Conference

April 15, 2020: Deadline to submit comments

July 22, 2020: Announcement of Round 3 7 finalists and 
8 alternate candidates

July 29, 2020: NSA’s Cybersecurity Perspective

Spring 2021: Third NIST PQC Conference

2022-2023: Draft standard(s) released for public
comments

2024: First PQC standard(s) published
13

Focus of 
this talk

Gazing 
the PQC
Crystal 
Ball

Reality
Check



Three Types of PQC Schemes

1. Public Key Encryption
(PKE) 

2. Digital Signature
(DS)

3. Key Encapsulation 
Mechanism 
(KEM)
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Key Establishment Using Long-Term Keys
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Client Server

Request

Certificate={Public_KeyServer, SignatureCA} 

Signature Verification
Encapsulation

Decapsulation

Ciphertext

Shared Secret Shared Secret

Private_KeyServer



Five Security Levels

Level Security Description
1 At least as hard to break as AES-128 using exhaustive 

key search
2 At least as hard to break as SHA-256 using collision 

search
3 At least as hard to break as AES-192 using exhaustive 

key search
4 At least as hard to break as SHA-384 using collision 

search
5 At least as hard to break as AES-256 using exhaustive 

key search
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Leading PQC Families
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Family Encryption/
KEM

Signature

Symmetric-based XX

Code-based XX X

Lattice-based XX X

Multivariate X XX

Isogeny-based X

XX – high-confidence candidates
X   – medium-confidence candidates 



Round 1 Candidates

Family Signature Encryption/KEM Overall

Lattice-based 5 21 26

Code-based 2 17 19

Multivariate 7 2 9

Symmetric-
based

3 3

Isogeny-based 1 1

Other 2 4 6

Total 19 45 64

82 submissions, 69 accepted as complete, 5 officially withdrawn
25 Countries, 6 continents, 256 co-authors
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Round 1 Submissions
12 considered broken, 8 in need of serious tweaks

DAGS.

Sources: Lange, ICMC May 2018 & pqc-comments@nist.gov



Round 2 Candidates

Family Signature Encryption/KEM Overall

Lattice-based 3 9 12

Code-based 7 7

Multivariate 4 4

Symmetric-
based

2 2

Isogeny-based 1 1

Total 9 17 26

26 Candidates announced on January 30, 2019
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Round 2 Submissions (announced Jan. 30, 2019)

Sources: Moody, PQCrypto May 2019

The 2nd Round Candidates
• Encryption/KEMs (17)

▪ Digital Signatures (9)

• CRYSTALS-KYBER
• FrodoKEM
• LAC
• NewHope
• NTRU (merger of NTRUEncrypt/NTRU-HRSS-KEM)
• NTRU Prime
• Round5 (merger of Hila5/Round2)
• SABER
• Three Bears

• BIKE
• Classic McEliece
• HQC
• LEDAcrypt (merger of LEDAkem/pkc)
• NTS-KEM
• ROLLO (merger of LAKE/LOCKER/Ouroboros-R)
• RQC

• SIKE

• CRYSTALS-DILITHIUM
• FALCON
• qTESLA

• Picnic
• SPHINCS+

• GeMSS
• LUOV
• MQDSS
• Rainbow

NIST Report on the 1st Round: https://doi.org/10.6028/NIST.IR.8240

• Lattice-based
• Code-based
• Isogenies

• Lattice-based
• Symmetric-based
• Multivariate

9
7

1

3

2
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Hardware 
Benchmarking



Round 2 Candidates in Hardware
#Round 2
candidates

5

14

29

26

AES

SHA-3

CAESAR

PQC

Implemented
in hardware

5

14

28

17

Percentage

100%

100%

97%

65%
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Challenges of Post-Quantum Cryptography

Mathematical complexity

Large amount of man-power

New types of basic operations

Need for random sampling not 
only from uniform but also from 
discrete Gaussian and/or other distributions
Constant-time implementations
Hardware resources required
Need for new SCA (Side-Channel Attack) countermeasures against 
power and electromagnetic analysis
Plug-and-play replacement for current public-key cryptography units
Intermediate use of hybrid systems

24



Major Optimization Targets

High-Speed
Lightweight

• Parallel processing
• Constant-time
• Parametric code

• Small area, power,
energy per operation

• Resistance to power
& electromagnetic 
analysis
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Lattice-Based KEMs in Pure Hardware

26

High-Speed Lightweight

KYBER H: GMU, USA

FrodoKEM H: PQShield/Bristol, UK + ALaRI, Switzerland 

LAC H: GMU, USA

NewHope H: Tsinghua, China
H: IIIT Delhi & IIT Ropar, India + NTU, Singapore & 
Fraunhofer, Singapore
H: GMU, USA

NTRU

NTRUPrime

Round5 H: MUT, Warsaw, Poland & GMU, USA H: MUT, Warsaw, Poland

SABER H: U. Birmingham, UK

Three Bears



Lattice-Based KEMs: HW & SW/HW
High-Speed Lightweight

KYBER H: GMU, USA
SH: Fudan U., China; (VPQC)

SH: Fraunhofer SIT, Darmstadt, 
Germany
SH: TUM/Airbus, Germany (RISQ-V)

FrodoKEM H: PQShield/Bristol, UK + ALaRI, Switzerland
SH: GMU, USA

SH: MIT, USA (Sapphire)

LAC H: GMU, USA
SH: Fudan U., China (VPQC)

NewHope H: Tsinghua, China
H: IIIT Delhi/IIT Ropar, India + NTU/Fraunhofer 
Singapore
H: GMU, USA
SH: TUM, Germany + Delft, the Netherlands
SH: Fudan U., China (VPQC)

SH: MIT, USA (Sapphire)
SH: Fraunhofer SIT, Darmstadt, 
Germany
SH: TUM/Airbus, Germany (RISQ-V)

NTRU SH: GMU, USA

NTRUPrime SH: GMU, USA

Round5 H: MUT, Warsaw, Poland + GMU, USA H: MUT, Warsaw, Poland

SABER HW: U. Birmingham, UK
SH: KU Leuven, Belgium + U. Birmingham, UK
SH: GMU, USA

SH: TUM/Airbus, Germany (RISQ-V)

Three Bears 27



Isogeny-Based and Code-Based KEMs
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High-Speed Lightweight

Isogeny-Based
SIKE H: FAU & USF, USA

SH: Radboud U., the Netherlands + Microsoft 
Research, USA 
H: FAU & USF, USA

SH: Radboud U., the 
Netherlands + Microsoft 
Research, USA 

Code-Based
BIKE H: NTU, Singapore + Yale U., USA + CUHK, Hong 

Kong (key generation)
H: Intel, USA (decoder)
H: R-U Bochum, Germany

Classic 
McEliece/
NTS KEM

H: Yale U., USA + Fraunhofer SIT, Darmstadt, 
Germany

LEDACrypt H: NTU, Singapore + Marche 
Polytechnic U., Italy  

ROLLO

RQC



Digital Signatures
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High-Speed Lightweight

Lattice-Based
DILITHIUM SH: MIT, USA

FALCON

qTESLA SH: MIT, USA
SH: Yale U., USA + MAN T&B SE, 
Germany + U. Waterloo, Canada + 
Microsoft Research, USA

Symmetric-Based
Picnic H: Graz U.T., Austria + AIT, Vienna, Austria

SPHINCS+

Multivariate
GeMSS

LUOV

MQDSS

Rainbow H: GMU, USA



NewHope and CRYSTALS-KYBER
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Feature NewHope CRYSTALS-KYBER

Underlying Problem Ring-LWE Module-LWE

Security Levels lattice dimension = n
L1: n=512, L5: n=1024

n=256, 
lattice dimension = k*n

L1: k=2, L3: k=3, 
L5: k=4

Modulus q Prime 12,289 Prime 3,329

Required Hash-based
Functions SHAKE128, SHAKE256 SHAKE128, SHAKE256

SHA3-256, SHA3-512

Sampling CBD* CBD*

# Poly-Mult in Encaps 2 k2 + k

# Poly-Mult in Decaps 3 k2 + 2k

* Centered Binomial Distribution (CBD)



Feature LAC (v3a/v3b) Round5 (0d/5d)

Underlying Problem Ring-LWE Ring-LWR

Error Correcting Code BCH None / XEf

Security Levels 
lattice dimension = n

L1: n=512, L3: n=1024, 
L5: n=1024

lattice dimension = n
L1: n=586/508
L3: n=852/756

L5: n=1170/946
Modulus q Prime 251 / 256 L1: 213/210, L3: 212/212

L5: 213/211

Required Hash-based
Functions Left up to implementers L1: SHAKE128, 

L3, L5: SHAKE256

Sampling n-ary CBD with fixed 
Hamming weight

uniform

# Poly-Mult in Encaps 2 2

# Poly-Mult in Decaps 3 3

LAC and Round5
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Common Optimization Method

32

Efficient hardware scheduling to perform operations 
without data dependency in parallel

NewHope Encryption



Common Optimization Method
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Efficient hardware scheduling to perform operations 
without data dependency in parallel

CRYSTALS-KYBER Encryption (Security Level 1)
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Common Optimization Method
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Efficient hardware scheduling to perform operations 
without data dependency in parallel

LAC Encryption

 Cycles (× 1000)
1 2 3 4 5

Rejection 
Sampling

           Permutation

           Permutation

           Permutation

a × r +e1

b × r

0

Keccak Poly Gen Poly Mult Poly Add

D2.Enc(BCH.Enc(m))

+ m + e2

Generate r

Generate e1

Generate e2

Encode

Generate a

LAC Decryption

 Cycles (× 1000)
1 2 3 4 50

Poly Mult BCH Decode

c1 × s

D2 Decode

D2.Dec(m’’)

BCH.Dec(m’)

Decompress(c2)-u

Poly Sub



Algorithm-Specific Optimization Methods 
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Number Theoretic Transform (NTT)
Processing FOUR coefficients at a 
time 
Resource sharing 
e.g., use a single module to 
perform NTT, NTT-1, & pointwise 
multiplication
Efficient modular reduction

NewHope & CRYSTALS-KYBER
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Encapsulation Time on Artix-7 [µs]
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Rankings & Ratios on Artix-7

Level 1
Exe[us] Ratio

Level 3
Exe[us]   Ratio

Level 5
Exe[us] Ratio

Round5_5d 12.2 1.00 Kyber 19.9 1.00 Round5_5d 27.6 1.00
Kyber 14.8 1.21 LAC-v3b 21.2 1.07 LAC-v3b 28.1 1.02
LAC-v3b 14.8 1.21 Round5_5d 21.6 1.09 Kyber 28.4 1.03
Round5_0d 16.0 1.31 Round5_0d 25.6 1.29 NewHope 30.3 1.10
NewHope 16.3 1.34 LAC-v3a 29.1 1.46 LAC-v3a 33.9 1.23
LAC-v3a 17.9 1.47

Level 1
Exe[us] Ratios

Level 3
Exe[us]   Ratio

Level 5
Exe[us] Ratio

Round5_5d 16.3 1 Kyber 27.2 1.00 Kyber 36.2 1.00
LAC-v3b 18.9 1.16 Round5_5d 28.4 1.04 Round5_5d 36.4 1.01
Round5_0d 20.6 1.26 LAC-v3b 28.7 1.06 LAC-v3b 37.9 1.05
Kyber 21.4 1.31 Round5_0d 33.2 1.22 NewHope 41.5 1.15
NewHope 22.0 1.35 LAC-v3a 37.4 1.38 LAC-v3a 43.8 1.21
LAC-v3a 22.2 1.36

Encapsulation

Decapsulation
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Resource Utilization on Artix-7
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Level 1: Key Generation on Artix-7
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Level 1: Encapsulation on Artix-7
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Level 1: Decapsulation on Artix-7
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Level 3: Key Generation on Artix-7
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Level 3: Encapsulation on Artix-7
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Level 3: Decapsulation on Artix-7
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Level 5: Key Generation on Virtex-7
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Level 5: Encapsulation on Virtex-7

1

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000 1,000,000

Sp
ee

d 
( O

ps
/s

ec
)

LUTs

NewHope Classic McEliece SIKE CRYSTALS-KYBER LAC Round5



48

Level 5: Decapsulation on Virtex-7
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Conclusions for Hardware Implementations

CRYSTALS-KYBER, LAC, NewHope, and Round5 comparable 
in terms of speed
CRYSTALS-KYBER & NewHope superior 
in terms of resource utilization
FrodoKEM and SIKE about 2 orders of magnitude slower 
for all operations
BIKE and Classic McEliece about 2 orders of magnitude slower 
for key generation and decapsulation

50



Software/Hardware
Co-design



Software/Hardware Codesign

Most time-critical 
operation

Software

Hardware

52



SW/HW Co-design: Motivational Example 1

53

Software Software/Hardware

91% major operation(s) 
9% other operations

~1% major operation(s) in HW
9% other operations in SW

speed-up ≥ 100

Total Speed-Up ≥ 10

Other
9%

Major
91%

Major
1%

Other
9%

Time saved
90%



SW/HW Co-design: Advantages
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Focus on a few (typically 1-3) major operations, known to be easily 
parallelizable

much shorter development time (at least by a factor of 10)
guaranteed substantial speed-up
high-flexibility to changes in other operations (such as candidate
tweaks)

Insight regarding performance of future instruction set extensions of 
modern microprocessors

Possibility of implementing multiple candidates by the same research 
group, eliminating the influence of different

design skills
operation subset (e.g., including or excluding key generation)

interface & protocol

optimization target
platform



SW/HW Co-design: Potential Pitfalls
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Performance & ranking may strongly depend on features of a 
particular platform

Software/hardware interface

Support for cache coherency

Differences in max. clock frequency

Performance & ranking may strongly depend on the selected 
hardware/software partitioning

First step, not the ultimate solution!



SW/HW Co-design Classification
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Loosely Coupled 
HW Accelerators

Tightly Coupled 
HW Accelerators

Hard Processor
Cores

Soft Processor
Cores

Soft processor
cores

• Cortex-A53
• Cortex-A9

• RISC-V • RISC-V



Advantages of Loosely and Tightly Coupled 
Accelerators

57

Loosely Coupled Tightly Coupled

Standard interfaces (AXI, TileLink) Low data transfer rate overhead

Ease of development Lower amount of hardware resources

Portability Crypto agility

More flexible at the hardware 
development stage

More flexible in the post-silicon phase



Our Focus in Round 2
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Loosely Coupled 
HW Accelerators

Tightly Coupled 
HW Accelerators

Hard Processor
Cores

Soft Processor
Cores

Soft processor
cores

• Cortex-A53
• Cortex-A9

• RISC-V • RISC-V



Two Major Types of Platforms
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System on Chip (SoC) FPGA “Traditional” FPGA

Examples:
• Xilinx Zynq 7000 System on Chip (SoC)

Zynq UltraScale+ MPSoC
• Intel Cyclone V SoC

Stratix 10 SoC FPGAs,

Examples:
Xilinx Artix-7, Virtex-7,

Virtex UltraScale+
Intel Cyclone 10 LP,

Stratix 10

Processor
w/ Memory

& I/O

FPGA 
Fabric

FPGA 
Fabric

Soft-core
Processor



Two Major Types of Platform
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Feature Hard Processor Cores Soft Processor Cores

Processor ARM RISC-V

Clock frequency >1 GHz max. 200-450 MHz

Portability similar FPGA SoCs various FPGAs, SoC FPGAs, 
and ASICs

Loosely-coupled 
accelerators

Yes Yes

Tightly-coupled 
accelerators

No Yes

Ease of design 
(methodology, tools, 
OS support)

Easy Dependent on a particular 
soft-core processor and 

tool chain



Platform & Experimental Setup
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Output FIFOInput FIFO Hardware 
Accelerator

Zynq Processing System

AXI DMA

FIFO 
Interface

FIFO 
Interface

AXI Stream
Interface

AXI Stream
Interface

AX
I L

ite
 

In
te

rf
ac

e

AX
I F

ul
l 

In
te

rfa
ce

AX
I L

ite
 

In
te

rf
ac

e

IR
Q

 

Clocking wizard

rd_clkwr_clk wr_clk rd_clkclk

UUT_clk

Main Clock 

AX
I L

ite
 

In
te

rfa
ce

AXI TimerAXI Lite 
Interface

Xilinx Zynq UltraScale+ MPSoC

PS: Processing System
1.2 GHz ARM Cortex-A53

PL: Programmable Logic
UltraScale+ FPGA logic



Our
Case Studies



SW/HW Codesign: Case Study
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12 Key Encapsulation Mechanisms (KEMs) 
representing 

8 out of 9 Round 2 Lattice-Based KEMs
LWE (Learning with Error)-based:

FrodoKEM

RLWR (Ring Learning with Errors)-based:

NewHope, LAC (3a/3b)

RLWR (Ring Learning with Rounding)-based:

Round5 (0d/5d)

Module-LWE-based:

CRYSTALS-KYBER

Module-LWR-based:

Saber

NTRU-based:
NTRU
• NTRU-HPS
• NTRU-HRSS

NTRU Prime
• Streamlined NTRU Prime
• NTRU LPRime



Methodology

64



LightSaber Decapsulation

MatrixVectorMul
43.44%

InnerProduct
43.52%

GenMatrix
5.03%

GenSecret
2.30%Hash

3.30%

Other
2.40%

65

SW/HW Codesign: Step 1 Profiling



SW/HW Co-design: Step 2 SW/HW Partitioning

66

Top candidates for offloading to hardware

From profiling:

Large percentage of the execution time

Small number of function calls

From manual analysis of the code:

Small size of inputs and outputs

Potential for combining with neighboring functions

From knowledge of operations and concurrent computing:

High potential for parallelization



Operations Offloaded to Hardware

• Major arithmetic operations

• Polynomial multiplications

• Matrix-by-vector multiplications

• Vector-by-vector multiplications

• All hash-based operations

• (c)SHAKE128, (c)SHAKE256

• SHA3-256, SHA3-512

67
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Saber Decapsulation
Functions offloaded to hardware highlighted in yellow
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Algorithm 8 Pseudocode of Saber.KEM.Decaps (sk = (s, z, pkh), pk = (seedA, b), c) [46]
1: m

Õ = Saber.PKE.Dec(s, c)
2: (K̂, r

Õ) = g(pkh, m
Õ)

3: c
Õ = Saber.PKE.Enc(pk, m

Õ; r
Õ)

4: if c = ct
Õ

then

5: return K = H(K̂Õ
, c)

6: else

7: return K = H(z, c)
8: end if

Algorithm 9 Pseudocode of Saber.PKE.Enc (pk = (seedA, b), m œ R2; r) [46]
1: A = gen(seedA) œ R

l◊l
q

2: (K̂, r
Õ) = g(pkh, m

Õ)
3: if r is not specified then

4: r = u({0, 1}256)
5: end if

6: s
Õ = —µ(Rl◊l

q ; r)
7: b

Õ = ((As
Õ + h) mod q) >> (‘q ≠ ‘p) œ R

l◊l
p

8: v
Õ = b

T (sÕ
mod p) œ Rp

9: cm = (vÕ + h1 ≠ 2‘p≠1
mmodp) >> (‘q ≠ ‘T ) œ RT

10: return c := (cm, b
Õ)

Algorithm 10 Pseudocode of Saber.PKE.Dec (sk = s, c = (cm, bÕ)) [46]
1: v = b

ÕT (s mod p) œ Rp

2: m
Õ = ((v ≠ 2‘p ≠ ‘T cm + h2) mod p) >> (‘p ≠ 1) œ R2

3: return m
Õ

of the hardware accelerator, Seed_Mem and Vector_b_and_S_Asym_Mem, using the 64-bit478

input bus infifo_data, before the encapsulation or decapsulation starts.479

Unlike in the pseudocode, in the hardware accelerator, vector sÕ is generated first. The480

public key pk is hashed using SHA3-256. The result is then hashed, together with the481

random value m, using SHA3-512 to obtain K̂ Õ and the seed r. r is used for encryption,482

and K̂ Õ is used to compute the shared secret at the end of encapsulation. The 256-bit seed r483

is loaded into Seed_Mem. The generation of sÕ involves SHAKE128 followed by the Sampler,484

generating w-bit integers using a centered binomial distribution (CBD). The obtained485

samples, representing the coe�cients of the vector sÕ, are stored in the asymmetric memory486

Matrix_S’_Asym_Mem.487

Subsequently, SHAKE128 is used to generate elements of the l x l matrix A, with each488

element representing a polynomial. In order to reduce the execution time and the size of489

Matrix_A_Asym_Mem memory, only one row of the A matrix is generated at a time, and used490

for the computations of bÕ = (AsÕ + h) mod q, in parallel with calculating the subsequent491

row of A. h in the above equation is a constant. The elements of A are multiplied by the492

corresponding elements of sÕ, read from Matrix_S’_Asym_Mem, sign-extended to 13-bits,493

and stored in the n-stage LFSR. With 4 coe�cients loaded per clock cycle, the initialization494

of the 256-stage LFSR takes 64 clock cycles. The temporary results are stored in the495

registers shown to the right of MACs in Fig. 6.496

The internal structure of the Saber LFSR is shown in Fig. 8. The feedback contains the497

multiplication by -1, corresponding to performing calculations mod Xn + 1. Each shift of498

this LFSR corresponds to the multiplication of the polynomial representing current-state499

by X.500

Each coe�cient of bÕ is then shifted right by 3 positions (corresponding to the division501

by q/p=213/210=8) and transferred back to the processor using the outfifo_data bus. In502
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SW/HW Co-design: Step 3 Accelerator Design
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Target: Minimum Execution Time
Hardware:

Register-Transfer Level methodology with VHDL or Verilog
Block diagram of the Datapath
Algorithmic State Machine (ASM) chart of the Controller

Software:

Input/Output transfers
Transfer of control between the processor and the accelerator



Detailed hierarchical block diagrams 
developed for the entire hardware accelerator
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LightSaber Decapsulation

MatrixVectorMul
43.44%

InnerProduct
43.52%

GenMatrix
5.03%

GenSecret
2.30%

Hash
3.30%

Other
2.40%

Execution time saved
88.83%

Other
2.40%

Hardware
Accelerator

8.77%

Total Speed-Up = 100/11.17=9.0

Execution time 
remaining

11.17%

Accelerator Speed-Up = 97.60/8.77=11.1

Execution time of functions 
to be moved to hardware

97.60%
Execution time of functions

remaining in software
2.40% 71
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SW Part Sped up by HW[%]: Decapsulation
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Round2 KEMs: SW/HW Results for Decaps
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Round2 KEMs: SW/HW Results for Decaps
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SW Part Sped up by HW[%]: Encapsulation
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Round2 KEMs: SW/HW Results for Encaps
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Round2 KEMs: SW/HW Results for Encaps
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Resource Utilization on Zynq UltraScale+
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SW/HW
Co-Design

Conclusions
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SW/HW Co-design: Conclusions
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Unless all operations offloaded to hardware, limited insight on ranking of 
pure hardware implementations

FrodoKEM much slower than other lattice-based KEMs

Concerns regarding resource utilization:

NTRU-HPS and NTRU-HRSS : large number of DSP units

Streamlined NTRU Prime and NTRU LPrime : large number of LUTs 
(but no DSP units)

In SABER & FrodoKEM resource utilization almost independent of the 
security level

Very significant step toward the development of full hardware 
implementations



High-Level
Synthesis



High-Level Synthesis (HLS)
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High Level Language
(C, C++, SystemC)

Hardware Description Language
(VHDL or Verilog)

High-Level Synthesis
(HLS)



Popular HLS Tools
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Commercial (FPGA-oriented): 

Academic: 
• Bambu:  Politecnico di Milano, Italy
• DWARV:  Delft University of Technology, The Netherlands
• GAUT: Universite de Bretagne-Sud, France
• LegUp: University of Toronto, Canada

• Vivado HLS: Xilinx – selected for this study
• FPGA SDK for OpenCL: Intel



Case for HLS in Crypto Competitions

All submissions include reference implementations in C
Development time potentially decreased several times

All candidates can be implemented by the same 
group, and even the same designer, reducing the bias
Results from High-Level Synthesis could have a large impact in 
early stages of the competitions and help narrow down the 
search (saving thousands of man-hours of cryptanalysis)
Potential for quickly detecting suboptimal code written manually
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GMU Case Studies
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Ekawat Homsirikamol
a.k.a “Ice”

• 5 Final SHA_3 Candidates + SHA-2
Applied Reconfigurable Computing, 
ARC 2015, Bochum, Apr. 2015

• 16 Round 3 CAESAR Candidates 
+ AES-GCM
Field Programmable Technology
Conference, Melbourne, Dec. 2017



HLS vs. Manual: SHA-3 Candidates Revisited
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Manual HLS

Keccak

Keccak

Groestl
GroestlJH

JH
SHA-2 SHA-2

BLAKE
Skein

BLAKE Skein

Altera Stratix III FPGA



HLS vs. Manual: Round 3 CAESAR Candidates
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Suboptimal 
HLS

> 1.30 [0.70, 0.90)
Manual may be

improved

[0.90, 1.30]
Manual and HLS

acceptable

Throughput Manual / Throughput HLS for Xilinx Virtex-7



Transformation to HLS-ready C/C++ Code

1. Interface mapping

2. Addition of HLS Tool directives (pragmas)

3. Hardware-driven code refactoring

89



Sources of Productivity Gains

• Higher-level of abstraction

• Focus on datapath rather than control logic

• Debugging in software (C/C++)

• Faster run time

• No timing waveforms

90



Software/Hardware Codesign with HLS

Most time-critical 
operation

Software

HLS-Generated Hardware
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SW/HW Co-design: GMU Case Study
Applied Reconfigurable Computing, ARC 2020
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3 Lattice-Based 
Key Encapsulation Mechanisms (KEMs)

representing 
2 NIST PQC Round 2 Submissions
1 NIST PQC Round 1 Submission

• CRYSTALS-KYBER
• Round 2 (R2)
• Round 1 (R1)

• NewHope
• Round 2 (R2)



Major Findings

93

Almost identical number of clock cycles

Identical number of DSP units

Identical number of BRAMs 
(except of 40% increase in Kyber R2)



Overhead: Clock Frequency [MHz]
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Algorithm RTL HLS HLS/RTL
1: NewHope 476 454 0.95

5: NewHope 476 455 0.96

1: Kyber R1 500 455 0.91

3: Kyber R1 500 455 0.91

5: Kyber R1 500 455 0.91

1: Kyber R2 500 455 0.91

3: Kyber R2 500 416 0.83

5: Kyber R2 500 416 0.83

Clock Frequency reduced by 17% or less



Overhead: LUTs

95

Algorithm RTL HLS HLS/RTL
1: NewHope 1,040 1,181 1.14

5: NewHope 842 1,110 1.32

1: Kyber R1 2,185 2,788 1.28

3: Kyber R1 3,318 4,205 1.27

5: Kyber R1 4,363 5,562 1.27

1: Kyber R2 2,040 2,325 1.14

3: Kyber R2 3,054 5,379 1.76

5: Kyber R2 4,055 7,111 1.75

#LUTs increased by 14%-76% or less



Comparison to the Previous Work in HLS
NTT only
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K. Kawamura, M. Yanagisawa, and N. Togawa, 
“A loop structure optimization targeting high-level synthesis of fast 
number theoretic transform,” 
in Int. Symposium on Quality Electronic Design, ISQED 2018.

6 No Author Given

At this point, the final functional verification, achieved by comparing inter-
mediate results and final outputs generated by the SW-only program and the
SW/HW program guarantees the correctness of the hardware accelerator and
the DMA transfer. If both the SW-only program and the SW/HW program
realize the same functionality, then the correct speed-up can be measured.

4.3 High Level Synthesis: Block Diagram versus Space Exploration

There are two approaches to implement hardware accelerators in HLS:

– SE/HLS: Implement HLS code to run as fast as possible by experimenting
with design exploration; the final hardware architecture is unknown until
the best result is achieved;

– BD/HLS: Develop block diagram, implement HLS code following this block
diagram.

Both SE/HLS and BD/HLS approaches inherit the advantages of HLS: quicker
verification and quicker development than in traditional RTL.

In the SE/HLS approach, a small portion of the total development time is
spent on writing HLS code and verifying its functionality. The rest of the time
is devoted to design space exploration using pragma directives. There are 24
pragma directives in HLS; di↵erent combinations will lead to di↵erent architec-
tures. The impact of a particular pragma directive is heavily dependent on the
code structure and the algorithm. Some directives may have no impact at all. Di-
rective such as unroll, pipeline, dataflow may replicate same hardware resources
multiple times, which increases the resources utilization significantly. Further-
more, the HLS synthesis process may take a lot of time depending on the number
of hardware architectures it creates, e.g., partial unrolling vs. full unrolling of a
big loop. The HLS resource usage reports are usually inaccurate, which makes
comparison between HLS reports unreliable. The exact result can only be ob-
tained after post-place and route in Vivado. Eventually, the HLS design by space
exploration may create sub-optimal hardware architecture.

In BD/HLS approach, the large portion of the total development time is
spent on developing a block diagram and implementing it in HLS-ready C. The
rest of the time is spent on verification. Since the exact hardware architecture
is known beforehand, space exploration is not required.

Structure of HLS code is the foundation for SE/HLS and BD/HLS code.
With well-structured code, BD/HLS can outperform SE/HLS. For example, the

Fig. 2. BD/HLS versus SE/HLS development timeline

Space-Exploration (SE) based vs. Block Diagram (BD) based 
approach  

Time spent on particular phases of the development process:



Comparison to Previous Work in HLS
1024-point NTT only
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BRAMs DSPs LUTs FFs Cycles

Previous work 11.5 10 21,167 16,402 7,597

Our work 10 4 1,110 1,342 4,776

Ratio 1.15 2.5 19 12 1.6

Previous work optimized for area

BRAMs DSPs LUTs FFs Cycles

Previous work 21.5 19 38,984 30,498 5,291

Our work 10 4 1,110 1,342 4,776

Ratio 2.15 4.75 35 23 1.1

Previous work optimized for speed



Additional Advantages of HLS vs. RTL
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Easy integration of software and hardware 
within the Xilinx SDSoC environment

No need for manually developed
Bare Metal or Linux drivers

for the communication between 
the microprocessor and hardware accelerator



HLS/SDSoC vs. RTL/Bare Metal
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14 No Author Given

Table 6. Speed up of Software/Hardware Codesign vs. Pure Software

Algorithm
Total SW

(µs)

Total SW
NTT
(µs)

%SW NTT
Total SW/HW

(µs)

Total
Speed-up

@Max Freq
BM SDSoC BM SDSoC

ENCAPSULATION
NewHope 1 360.3 199.8 55% 175.2 180.3 2.06 2.00
NewHope 5 737.0 438.1 59% 324.0 332.2 2.27 2.22
Kyber R1-1 389.2 240.9 62% 158.9 161.1 2.45 2.42
Kyber R1-3 582.3 368.3 63% 224.8 228.7 2.59 2.55
Kyber R1-5 826.9 509.4 62% 329.6 334.0 2.51 2.48
Kyber R2-1 328.5 237.8 72% 101.1 103.4 3.25 3.18
Kyber R2-3 533.9 343.0 64% 201.5 205.7 2.65 2.60
Kyber R2-5 785.2 495.4 63% 301.8 306.4 2.60 2.56

DECAPSULATION
NewHope 1 427.5 273.5 64% 177.8 184.6 2.40 2.32
NewHope 5 895.7 598.0 67% 334.0 347.1 2.68 2.58
Kyber R1-1 483.2 340.8 71% 161.9 165.2 2.98 2.92
Kyber R1-3 710.4 504.2 71% 226.5 231.8 3.14 3.06
Kyber R1-5 992.1 682.4 69% 332.0 338.0 2.99 2.94
Kyber R2-1 429.5 315.5 73% 133.3 136.6 3.22 3.14
Kyber R2-3 667.8 476.8 71% 211.1 216.8 3.16 3.08
Kyber R2-5 950.8 662.9 70% 310.0 316.4 3.07 3.00

Traditional RTL SW/HW Codesign often uses Bare Metal (BM) to han-
dle transfer between CPU and FPGA. The DMA in BM is often implemented
manually. Contrary to that, SDSoC creates an abstraction layer of the inter-
face handler. As a result, switching from software to hardware is very easy. To
demonstrate the overhead of abstraction in using SDSoC, the best selected trans-
fer interface in SDSoC is compared with Bare Metal in Table 5. Additionally,
the Transfer Overhead column is the percentage of Total Transfer Time
over the Total SW/HW in Table 6.

In Table 6, timing results are summarized. The Total SW is the software
only execution time, the Total SW NTT column is the time spent on NTT
operations in SW, %SW NTT is the percentage of the total execution time in
software devoted to NTT, the Total SW/HW is the total time after o✏oading
the critical function (NTT) to hardware. The Total Speed-up @Max Freq is
the ratio between Total SW and Total SW/HW. This speed-up is roughly
equal between the SDSoC and Bare Metal approaches.

7 Conclusions

Using HLS and SDSoC are two promising approaches to benchmarking SW/HW
implementations of PQC. With the help of these approaches, the development
time is substantially reduced, with the relatively small penalty in terms of the

Total SW/HW execution time 
increased by 3% or less!

RTL HLS
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NIST Announcement on July 22, 2020
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Round 3 Candidates

Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+



NIST Announcement on July 22, 2020
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NISTIR 8309
“Status Report on the Second Round of the NIST Post-Quantum 
Cryptography Standardization Process,”
by Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, 
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, 
Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone 

available  https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

No references to papers on hardware implementations.
All decisions based solely on security analysis 
and (to lower extent) performance in software. 

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf


NSA’s Cybersecurity Perspective on PQC
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Lattice-Based Cryptography

“These systems are fairly well-studied in cryptologic literature, 
and analysis suggests that these systems 
can be secure when well-parameterized.
We agree with the NIST assessment […] that these are 
among the most efficient post-quantum designs. 
Based on their history of analysis and implementation efforts, 
NSA CSD [Cybersecurity Directorate] expects that 
a NIST-candidate lattice-based signature and 
a NIST-candidate lattice-based key encapsulation mechanism 
will be approved for NSS [National Security Systems]."



NSA’s Cybersecurity Perspective on PQC
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Hash-Based Signatures

“These systems are also fairly well-studied in cryptologic literature, 
and analysis suggests that these systems can be secure when 
well-parameterized. However, the stateful versions 
have a limited number of allowable signatures per public key and 
require the signer to maintain an internal state. 
Because of this, they are not suitable for all applications. 
NSA CSD expects that the stateful signatures LMS and XMSS
will be standardized by NIST in NIST SP 800-208 and approved 
for NSS solutions for certain niche applications 
where maintaining state is not a problem.”



NSA’s Cybersecurity Perspective on PQC
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Future

“At the present time, NSA CSD does not anticipate the need to 
approve other post-quantum cryptographic technologies 
for NSS usage, but recognizes circumstances could change 
going forward. A variety of factors—including 
confidence in security and performance, interoperability, 
systems engineering, budgeting, procurement, and 
other requirements—could affect such decisions.”
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Gazing 
the PQC
Crystal 

Ball
(use with caution!)



Candidates to Beat
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8/18/20, 6:15 PMPQCrypto 2017

Page 1 of 5https://2017.pqcrypto.org/conference/schedule.html

PQCrypto 2017
The Eighth International Conference on Post-

Quantum Cryptography
Utrecht, the Netherlands, June 26–28, 2017

Home
Registration
Stipends
Program
Accepted
papers
Invited
speakers
About Utrecht
Venue
Accommodation
Travel and Visa
Important Dates
Call for Papers
Submission
Program
Committee
Support
Whom to
contact

Related events

PQCRYPTO
School
Executive
School

Schedule for PQCrypto 2017

Monday
09:00 –
09:25 registration

09:25 –
09:30 opening (Tanja Lange)

Invited talk (chair: Tsuyoshi Takagi)
09:30 –
10:30 Jaya Baloo

EU Quantum Flagship (slides)
10:30 –
11:00 coffee break

Security models (chair: Peter Schwabe)
11:00 –
11:25 Bart Mennink and Alan Szepieniec

XOR of PRPs in a Quantum World (slides)
11:25 –
11:50 Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila

Transitioning to a Quantum-Resistant Public Key Infrastructure (slides)
11:50 –
12:15

Tommaso Gagliardoni, Nikolaos P. Karvelas, and Stefan
Katzenbeisser
ORAMs in a Quantum World (slides)

12:15 –
13:30 lunch break

Code-based crypto I (chair: Rainer Steinwandt)
13:30 –
13:55 Pierre Loidreau

A new rank metric codes based encryption scheme (slides)
13:55 –
14:20 Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor

Ouroboros: a simple, secure and efficient key exchange protocol
based on coding theory (slides)

8/18/20, 6:15 PMPQCrypto 2017

Page 4 of 5https://2017.pqcrypto.org/conference/schedule.html

16:30 –
17:00 NIST Q&A session

Daniel Smith-Tone, Ray Perlner, and Dustin Moody (slides for opening
statment)

18:00 – Reception and dinner in Museum Speelklok
(Reception and visit of exhibition at 18:00, dinner at 19:00)

Wednesday
Invited talk (chair: Andreas Hülsing)

09:00 –
10:00 Vadim Lyubashevsky

Standardizing Lattice Crypto and Beyond (slides)
10:00 –
10:30 coffee break

Lattice-based crypto II (chair: Daniel J. Bernstein)
10:30 –
10:55 Boru Gong and Yunlei Zhao

Cryptanalysis of RLWE-Based One-Pass Authenticated Key Exchange
(slides)

10:55 –
11:20 Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer

A Hybrid Lattice Basis Reduction and Quantum Search Attack on LWE
(slides)
Multivariate crypto II (chair: Bo-Yin Yang)

11:20 –
11:45 Dustin Moody, Ray Perlner, and Daniel Smith-Tone

Improved Attacks for Characteristic-2 Parameters of the Cubic ABC
Simple Matrix Encryption Scheme (slides)

11:45 –
12:10 Jeremy Vates and Daniel Smith-Tone

Key Recovery Attack for All Parameters of HFE- (slides)
12:10 –
12:35 Daniel Cabarcas, Daniel Smith-Tone, and Javier A. Verbel

Practical Key Recovery Attack for ZHFE (slides)
12:35 –
12:45 closing remarks (slides announcing PQCrypto 2018)

12:45 –
14:00 lunch break

Support

CRYSTALS
Cryptographic Suite for Algebraic Lattices

Joppe Bos Leo Ducas
Eike Kiltz Tancrede Lepoint

Vadim Lyubashevsky John Schanck
Peter Schwabe Gregor Seiler    Damien Stehle

KEM: 
CRYSTALS-KYBER

Digital Signature: 
CRYSTALS-DILITHIUM



Close Matchups
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CRYSTALS-KYBER

CRYSTALS-DILITHIUM

SABER NTRU

FALCON

Digital Signatures

KEMs

Module-LWE: 
Module Learning 

with Errors

Module-LWR: 
Module Learning 

with Rounding

SVP
Shortest Vector 

Problem

Fiat-Shamir with aborts
Module-LWE

& Module SIS 
(Short Integer Solution)

Hash & Sign
SIS 

(Short Integer Solution)
over NTRU Lattices



Round 3 Candidates without HW or SW/HW 
Implementations
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Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+

HLS may be 
still justified

RTL expected



Round 3 Candidates in Need of Improved 
Implementations
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Classic McElieceCRYSTALS-KYBER
NTRU
SABER

CRYSTALS-DILITHIUM
FALCON

Rainbow

Encryption/KEM

Digital Signature
Lattice-based

Lattice-based Code-based

Multivariate
FINALISTS

ALTERNATE

Encryption/KEM

Digital Signature

Lattice-based

FrodoKEM
NTRU Prime

Code-based

BIKE
HQC

Isogeny-based

SIKE

GeMSS

MultivariateSymmetric-based

Picnic
SPHINCS+



Other Potential Research Directions
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Current 
Work

PQC Hardware 
Accelerators
for RISC-V

Constant-Time 
High-Speed Hardware

Lightweight 
Implementations
Protected Against
Side-Channel Attacks



Upcoming Milestones

Oct. 1, 2020: Deadline for updated Round 3 submission 
packages 

Spring 2021: Third NIST PQC Conference

Fall 2021:      Deadline for submitting comments

2022-2023:   Draft standard(s) released for public
comments

2024: First PQC standard(s) published

114



PQC Opportunities & Challenges

Efficient hardware implementations of Round 3 
candidates in FPGAs and ASICs sought by NIST to prove 
the final candidates’ suitability for high-performance 
applications and constrained environments 

Potential new standards in other countries, including 
China

Likely Instruction Set Extensions for multiple major 
microprocessors

First PQC industry trials

Multiple opportunities for collaboration!
115



Q&A
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CERG: http://cryptography.gmu.edu
ATHENa:  http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!

https://eprint.iacr.org/2020/795

Choose: PQC


